Наноимпланты
Возможность конструирования из атомов практически любых объектов с заданными физико-химическими параметрами открывает широчайшие перспективы по созданию наноимплантов. На основе синтетических и биологических материалов создаются полимеры, аналогичные живым тканям. Их высокая биосовместимость и безопасность обусловлены сложной сетчато-ячеистой структурой, способностью распадаться в живой ткани на естественные биологически активные вещества без нарушения естественного обмена веществ и другими свойствами. В частности, такими разработками занимается Курчатовский институт.
Учёные Белгородского университета во главе с Т.В. Павловой исследуют возможности применения нанобиокомпозитов при изготовлении и вживлении имплантов в костную ткань черепа. Типичные проблемы при замещении костной ткани искусственными материалами – их плохая приживаемость, отторжение эндопротеза и некроз.
Использование электроаккумуляторов на городском транспорте — требование современной экологии
В современной технике в качестве накопителей и источников электрической энергии используются литий-ионные аккумуляторы. «ЛИОТЕХ» — единственный в России производитель таких аккумуляторов для городского электротранспорта, который освобождает наши города от вредных выбросов продуктов сгорания.
Общие потребности России в пассажирском электротранспорте огромны — до 7000 машин в год — и работа уже успешно начата. В 15 городах перевозят пассажиров более 200 лиотеховских электробусов и троллейбусов с аккумуляторами, позволяющими продолжать движение и за пределами проводной сети.
Электропроводимый жидкий металл
За счет электричества можно заставить простой сплав жидкого металла, состоящий из галлия, иридия и олова, образовывать сложные фигуры или же наматывать круги внутри чашки Петри. Можно с некоторой долей вероятности сказать, что это материал, из которого был создан знаменитый киборг серии T-1000, которого мы могли видеть «Терминаторе 2».
Этот металл биомиметический, то есть он имитирует биохимические реакции, хотя сам не является биологическим веществом.
Управлять этим металлом можно за счет электрических разрядов. Однако он и сам способен самостоятельно передвигаться, за счет появляющегося дисбаланса нагрузки, которое создается разностью в давлении между фронтальной и тыльной частью каждой капли этого металлического сплава. И хотя ученые считают, что этот процесс может являться ключом к конвертации химической энергии в механическую, молекулярный материал в ближайшем будущем не собираются использовать для строительства злых киборгов. Весь процесс «магии» может происходить только в растворе гидроксида натрия или соляном растворе.
Инсулин
Открытие, которое позже позволило изобрести инсулин, стало чистой случайностью.
В 1889 году два доктора из Страсбургского университета, Оскар Минковски и Джозеф вон Меринг, пытаясь понять, как поджелудочная железа влияет на пищеварение, удалили этот орган у здоровой собаки. Спустя несколько дней они обнаружили, что вокруг урины подопытного пса собираются мухи, что оказалось совершенной неожиданностью.
Они провели анализ этой мочи и обнаружили в ней сахар. Ученые поняли, что его наличие связано с удаленной несколькими днями ранее поджелудочной железой, что привело к тому, что у собаки развился диабет.
Тем не менее эти двое ученых так и не выяснили, что гормоны, вырабатываемые поджелудочной железой, регулируют сахар в крови. Это выяснили исследователи из Университета Торонто, которые в рамках экспериментов, проводившихся с 1920 по 1922 годы, смогли выделить гормон, который впоследствии получил название инсулин.
За это революционное открытие ученые из Университета Торонто были удостоены Нобелевской премии, а фармацевтическая компания Eli Lilly and Company, с одним из владельцев которой был знаком один из ученых, начала первое промышленное производство этого вещества.
Наноботы в живом организме
В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.
Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и тем самым подтвердили полезность, безопасность и эффективность наноботов.
Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.
Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время наноботы просто растворяются в кислотной среде желудка.
Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.
Нанотехнологии в медицине и этика
Столь бурное развитие наномедицины ставит перед человечеством массу вопросов этического и юридического характера. Сознание и мировоззрение большинства землян явно отстают от технологических скачков большой науки.
Использование эмбриональных стволовых клеток, селекционный подход к эмбрионам, евгеника, редактирование генетического кода и изменение человеческой природы вплоть до создания биороботов – эти и масса других сложно разрешимых вопросов встают перед обществом. Чего только стоит возможность бессмертия, обрекающего Землю на перенаселение и глобальный кризис…
О дивный наномир! Не окажется ли он Вавилонской башней наоборот – растущей не вверх, а вглубь, внутрь, в микромиры, вторжение в которые таит свои опасности? Покажет время. А современному поколению людей пока едва ли стоит рассчитывать на нановрачей.
Лучше самим позаботиться о продлении активного долголетия. Благо, что природа уже создала массу естественных биостимуляторов, способных предупредить многие недуги и отдалить старение. Это растительные средства: адаптоген левзея сафлоровидная, антиоксидант из лиственницы – дигидрокверцетин, особенно ценимый русским народом иван-чай, полезные для сердца и сосудов боярышник и шиповник, регулятор обменных процессов, защитник печени и суставов одуванчик и многие другие, зачастую под ногами у нас растущие травы. Не меньшим оздоравливающим потенциалом обладают пчелопродукты: маточное молочко, обножка, трутневый расплод и др.
Искусственная сетчатка
Будущее искусственного зрения видится настолько ярким, что здесь не обойтись без солнцезащитных очков… или специальной нанопленки, предназначающейся для имитации сетчатки ваших глаз. Израильская компания Nano Retina разрабатывает интерфейс, который будет напрямую подключатся к нейронам глаза и передавать результат нейронного моделирования в мозг, заменяя сетчатку и возвращая людям зрение.
Эксперимент на слепой курице показал надежду на успешность проекта. Нанопленка позволила курице увидеть свет. Правда, до конечной стадии разработки искусственной сетчатки для возвращения людям зрения пока еще далеко, но наличие прогресса в этом направлении не может не радовать.
Nano Retina — не единственная компания, которая занимается подобными разработками, однако именно их технология на данный момент видится наиболее перспективной, эффективной и адаптивной. Последний пункт наиболее важен, так как мы говорим о продукте, который будет интегрироваться в чьи-то глаза. Похожие разработки показали, что твердые материалы непригодны для использования в подобных целях.
И последнее. Так как технология разрабатывается на нанотехнологическом уровне, она позволяет исключить использование металла и проводов, а также избежать низкого разрешения моделируемой картинки.
Первая в мире 3D-напечатанная грудная клетка
Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.
Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.
Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.
В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.
Наноиглы для восстановления внутренних органов
Нанопластыри, о которых мы говорили выше, разработаны специально для замены игл. А что, если сами иглы были бы размером всего несколько нанометров? В таком случае они могли бы изменить наше представление о хирургии, или по крайней мере существенно ее улучшить.
Совсем недавно ученые провели успешные лабораторные испытания на мышах. С помощью крошечных игл исследователи смогли ввести в организмы грызунов нуклеиновые кислоты, способствующие регенерации органов и нервных клеток и тем самым восстанавливающие утерянную работоспособность. Когда иглы выполняют свою функцию, они остаются в организме и через несколько дней полностью в нем разлагаются. При этом никаких побочных эффектов во время операций по восстановлению кровеносных сосудов мышц спины грызунов с использованием этих специальных наноигл ученые не обнаружили.
Если брать в расчет человеческие случаи, то такие наноиглы могут использоваться для доставки необходимых средств в организм человека, например, при трансплантации органов. Специальные вещества подготовят окружающие ткани вокруг трансплантируемого органа к быстрому восстановлению и исключат возможность отторжения. Другим способом применения этих игл может стать «перепрограммирование» поврежденных во время ожогов клеток на быстрое самовосстановление и возвращение их функций. При этом без каких-либо шрамов.
Нанопластыри
Трипанофобы, возрадуйтесь! В самом ближайшем будущем вам, возможно, больше не придется бояться иголок. Исследователи из Йоркского университета работают над созданием специальных пластырей, которые будут предназначаться для доставки всех необходимых лекарств внутрь организма без какого-либо использования иголок и шприцов. Пластыри вполне себе обычного размера приклеиваются к руке, доставляют определенную дозу наночастиц лекарственного средства (достаточно маленькие, чтобы проникнуть через волосяные фолликулы) внутрь вашего организма. Наночастицы (каждая размером менее 20 нанометров) сами найдут вредоносные клетки, убьют их и будут выведены из организма вместе с другими клетками в результате естественных процессов.
Ученые отмечают, что в будущем такие нанопластыри можно будет использовать при борьбе с одним из самых страшных заболеваний на Земле — раком. В отличие от химиотерапии, которая в таких случаях чаще всего является неотъемлемой частью лечения, нанопластыри смогут в индивидуальном порядке находить и уничтожать раковые клетки и оставлять при этом здоровые клетки нетронутыми. Проект нанопластыря получил название «NanJect». Его разработкой занимаются Атиф Сайед и Закария Хуссейн, которые в 2013 году, еще будучи студентами, получили необходимое спонсирование в рамках краудсорсинговой компании по привлечению средств.
Остается лишь понадеяться, что нанопластыри доведут до ума, выпустят в продажу и не в коем случае не совместят эту разработку с технологией жидкого металла, о которой мы писали выше.
Автоматическая идентификация объектов и микрокомпьютеры банковских карт — порядок и учет на новом уровне
С развитием техники размеры компонентов, из которых она состоит, постоянно уменьшаются, но еще важнее, когда микроэлектроника берет на себя функции порядка и контроля, касающиеся каждого человека. Здесь ее работа должна быть не просто точной, а безупречной. Такие «ответственные» интегральные схемы производит российская компания «Микрон».
1 800 000 футбольных болельщиков Мундиаля-2018 быстро и организованно прошли на стадионы по специальным паспортам болельщика с RFID-метками «Микрон». Защищенные чипы в картах системы «Мир» обеспечивают бесперебойные платежи, а выезжающие за границу граждане России имеют надежные чипы в своих биометрических загранпаспортах.
Похожие новости
02/12/2015
На протяжении ряда лет сотрудники лаборатории эпигенетики развития ФИЦ «Института цитологии и генетики СО РАН» ведут работы по созданию Биобанка клеточных моделей заболеваний человека, который затем будет использоваться при создании препаратов для лечения наследственных нейродегенеративных и сердечнососудистых заболеваний.
2212
02/09/2016
Прибор, сконструированный в Институте химической кинетики и горения им. В.В. Воеводского СО РАН, помогает обнаружить наночастицы за несколько минут.— Есть работы российских, украинских, английских и американских исследователей, которые показывают, что в городах с высоким содержанием наночастиц отмечается повышенный уровень заболеваемости сердечными, онкологическими и легочными заболеваниями, — подчеркивает старший научный сотрудник ИХКГ СО РАН кандидат химических наук Сергей Николаевич Дубцов.
2949
01/08/2017
Исследователи Института химической биологии и фундаментальной медицины СО РАН создают соединения-конструкторы на основе белка альбумина, способные эффективно достигать опухолей раковых больных — в будущем эти вещества могут стать основой для лекарств.
1050
20/02/2019
Сотрудники Национального медицинского исследовательского центра имени академика Е. Н. Мешалкина создали новый тип биопротеза клапана для детской кардиохирургии. Он менее других подвержен кальцификации, что позволит сократить количество повторных оперативных вмешательств.
782
12/11/2018
Ученые Института химической биологии и фундаментальной медицины СО РАН, Новосибирского института органической химии им. Н. Н. Ворожцова СО РАН и ФИЦ «Институт цитологии и генетики СО РАН» нашли эффективные белковые мишени для разработки препаратов против рака прямой кишки, легких и кишечника.
1269
27/08/2018
На VI Международном форуме технологического развития и выставке «Технопром-2018» состоялось подписание соглашений о сотрудничестве между нефтехимической компанией ООО «СИБУР» и двумя новосибирскими научно-исследовательскими организациями: Новосибирским институтом органической химии им.
1039
22/09/2016
Новосибирский государственный университет в сотрудничестве с российскими и зарубежными научными организациями работает над реализацией масштабного проекта по созданию клиники для лечения глиобластомы мозга и других онкологических заболеваний с помощью метода бор-нейтронозахватной терапии и ускорительного источника нейтронов Института ядерной физики им Г.
4081
13/01/2016
Татьяна Толстикова: «В СО РАН есть все предпосылки, чтобы решить проблему импортозамещения лекарств»
Доктор биологических наук, профессор Татьяна Генриховна Толстикова возглавляет лабораторию Новосибирского института органической химии им. Н.Н. Ворожцова (НИОХ) СО РАН — уникальную для России структуру.
3591
10/08/2018
Сибирские ученые подтвердили эффективность грибов лисичек в борьбе с описторхозом и в перспективе планируют создать на их основе антигельминтные препараты нового поколения, сообщает в пятницу Институт цитологии и генетики СО РАН (ИЦиГ СО РАН).
926
Нанороботы взамен привычных лекарств
Представляете, что взамен таблеток и уколов в ваш организм вводят микророботов – настолько маленьких, что сложнейшие манипуляции на молекулярном уровне для них не проблема? И такие наномашины уже создаются. Сами они размером с молекулы (не более 10 нм). При этом способны свободно передвигаться внутри тела человека, собирать, систематизировать и передавать информацию, выполнять запрограммированные действия. Управляются нановрачи ультразвуком, тепловыми, электромагнитными и иными видами волн.
В перспективе на них могут быть возложены различные функции:
— диагностика болезней;
— разрушение патологических клеток и вредоносных бактерий, что станет новым словом в борьбе с раком и другими болезнями;
— микрохирургия;
— адресная доставка лекарств именно к нуждающимся в них тканям, что значительно уменьшит побочные эффекты сильнодействующих синтетических препаратов.
Учёные полагают, что однажды эти крохи-«биофиксики» будут успешно бороться с тромбами и холестериновыми отложениями при атеросклерозе, останавливать кровотечение, штопая повреждённые сосуды и даже исправляя генетические неполадки в структуре ДНК.
Новейшие медицинские достижения
5. Возможное лечение болезни Паркинсона
В 2014 году учёные взяли искусственные, но полностью функционирующие человеческие нейроны и успешно привили их в мозг мышам. У нейронов есть потенциал для лечения и даже вылечивания таких заболеваний, как болезнь Паркинсона.
Нейроны были созданы группой специалистов из института Макса Планка, университетской клиники Мюнстера и университета Билефельда. Учёным удалось создать стабильную нервную ткань из нейронов, перепрограммированных из клеток кожи.
Другими словами, они индуцировали нейронные стволовые клетки. Это метод, который увеличивает совместимость новых нейронов. Спустя шесть месяцев у мышей не развилось никаких побочных эффектов, а имплантированные нейроны отлично интегрировались с их мозгом.
Грызуны продемонстрировали нормальную мозговую деятельность, в результате которой сформировались новые синапсы.
У новой методики есть потенциал, который может дать нейрологам возможность заменить больные, поврежденные нейроны здоровыми клетками, которые в один прекрасный день смогут справиться с болезнью Паркинсона. Из-за неё нейроны, поставляющие допамин, умирают.
На сегодняшний день никакого лечения от этого заболевания нет, но симптомы поддаются лечению. Болезнь, как правило, развивается у людей в возрасте 50-60 лет. При этом мышцы становятся жёсткими, происходят изменения в речи, меняется походка и появляется тремор.
4. Первый в мире бионический глаз
Пигментный ретинит является наиболее распространённым среди наследственных заболеваний глаз. Он приводит к частичной потере зрения, а зачастую и к полной слепоте. К ранним симптомам относится потеря ночного видения и трудности с периферийным зрением.
В 2013 году была создана система протезирования сетчатки Argus II, первый в мире бионический глаз, предназначенный для лечения запущенной стадии пигментного ретинита.
Система Argus II – это пара наружных стёкол, оснащённых камерой. Изображения преобразуются в электрические импульсы, которые передаются электродам, имплантированным в сетчатку глаза пациента.
Эти изображения головным мозгом воспринимаются как световые шаблоны. Человек учится интерпретировать эти паттерны, постепенно восстанавливая зрительное восприятие.
В настоящее время система Argus II пока доступна только на территории США и Канады, но есть планы по её внедрению во всём мире.
Искусственное производство тетрагидроканнабинола
Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).
Однако биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.
В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.
Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.
В будущем ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что в конечном итоге удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.
Печать ДНК
Технологии 3D-печати привели к появлению уникальной новой индустрии — печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.
Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.
Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.
Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании — вот список первых клиентов таких компаний, как Cambrian.
Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.
Новые достижения в области медицины
3. Обезболивающее, которое работает только за счёт света
Сильную боль традиционно лечат опиоидными препаратами. Основной недостаток в том, что многие такие препараты могут вызывать привыкание, поэтому потенциал для злоупотреблений у них огромен.
А что если учёные смогли бы останавливать боль не используя ничего, кроме света?
В апреле 2015 года неврологи Вашингтонской медицинской школы при университете в Сент-Луисе объявили, что им удалось это сделать.
Путём соединения свето-чувствительного белка с опиоидными рецепторами в пробирке, они смогли активировать опиоидные рецепторы также, как это делают опиаты, но только с помощью света.
Результаты своих опытов они опубликовали он-лайн в журнале Neuron.
Есть надежда, что эксперты смогут разработать способы использования света для облегчения боли при применении лекарств с меньшими побочными эффектами. Согласно исследованиям Эдварда Сиуда (Edward R. Siuda), вполне вероятно, что после дополнительных экспериментов, свет сможет полностью заменить лекарства.
Для тестирования нового рецептора светодиодный чип размером примерно с человеческий волос был имплантирован в мозг мыши, который после этого связали с рецептором. Мышей помещали в камеру, где их рецепторы стимулировали на выработку допамина.
Если мыши уходили из специальной отведённой зоны, то свет выключали и стимулирование останавливалось. Грызуны быстро возвращались на место.
2. Искусственные рибосомы
Рибосома – это молекулярная машина, состоящая из двух субъединиц, которые используют аминокислоты из клеток, чтобы создавать белки.
Каждая из субъединиц рибосом синтезируется в ядре ячейки, а затем экспортируется в цитоплазму.
В 2015 году исследователи Александр Мэнкин (Alexander Mankin) и Майкл Джеветт (Michael Jewett) смогли создать первую в мире искусственную рибосому. Благодаря этому у человечества появился шанс узнать новые подробности о работе этой молекулярной машины.
Она также сможет послужить основой для создания лекарственных препаратов и биологических материалов будущего.
Результаты исследования они опубликовали в электронной версии журнала Science.
Согласно этому документу, искусственная рибосома, называемая «рибо-Т», продолжает функционировать после введении клетки E.coli, даже при отсутствии «диких» рибосом, сохраняя бактерии живыми и демонстрируя их способность к размножению.
В отличие от обычных рибосом рибо-Т не разделяются, что до сих пор считалось неотъемлемой частью белкового синтеза. Рибо-Т учит нас новым аспектам работы рибосомы.
«Наша новая, создающая белок система, обещает расширить генетический код уникальным, преобразующим образом, предоставляя тем самым захватывающие возможности для синтетической биологии и биомолекулярной инженерии», — делится Майкл Джеветт.
1. Двусторонний трансплантат рук
Врачи детской больницы в Филадельфии вошли в историю, когда ранее в текущем году успешно пересадили две донорские кисти рук и предплечья 8-летнему Циону Харви (Zion Harvey). Харви пережил пересадку почки и двойную ампутацию после перенесения в 2-летнем возрасте серьёзной инфекции.
Донорские конечности были куплены в рамках программы некоммерческой организации Gift of Life Donor Program. Хирургическая бригада собрала воедино кости, кровеносные сосуды, нервы, сухожилия и кисти рук во время сложнейшей 10-часовой операции, которая была проведена в июле текущего года.
Таким образом, Харви стал первым ребёнком в мире, прошедшим процедуру по двухсторонней трансплантации рук. В настоящее время мальчик нуждается в ежедневных иммунодепрессантах, а также он проходит физиотерапию, чтобы максимально восстановить функциональность кистей.
Трехмерная химическая печать
Только представьте себе 3D-принтер, способный работать сразу со множеством различных материалов. Химик Иллинойского университета Мартин Берк — настоящий Вилли Вонка из мира химии. Используя коллекцию молекул «строительного материала» самого разного назначения, он может создавать огромное число различных химических веществ, наделенных всевозможными «удивительными и при этом естественными свойствами». Например, одним из таких веществ является ратанин, который можно найти только в очень редком перуанском цветке.
Потенциал синтезирования веществ настолько огромен, что позволит производить молекулы, использующиеся в медицине, при создании LED-диодов, ячеек солнечных батарей и тех химических элементов, на синтезирование которых даже у самых лучших химиков планеты уходили годы.
Возможности нынешнего прототипа трехмерного химического принтера пока ограничены. Он способен создавать только новые лекарственные средства. Однако Берк надеется, что однажды он сможет создать потребительскую версию своего удивительного устройства, которая будет обладать куда большими возможностями. Вполне возможно, что в будущем такие принтеры будут выступать в роли своеобразных домашних фармацевтов.
22 марта 2019 / ИТАР ТАССПресс-конференция Анатолия Чубайса «РОСНАНО 2018: итоги года, успех десятилетия»
Консолидированная финансовая отчетность АО «РОСНАНО» в соответствии с МСФО и Аудиторское заключение за 2018 год
PDF | ~4,16 Mb
Бухгалтерская отчетность за 2018 год
PDF | ~11,6 Mb
На пресс-конференции Анатолий Чубайс рассказал о финансовых и инвестиционных результатах работы РОСНАНО за 2018 год, наиболее ярких проектах в портфеле, а также о социально-экономических достижениях наноиндустрии.
Вклад государства в Группу РОСНАНО за 11 лет полностью окупился за счет налогов портфельных компаний. А доходы от инвестиций РОСНАНО в 2018 году третий год подряд превысили вложенные в проекты средства.
В 2018 году компания активно привлекала частные инвестиции в новые фонды и с прибылью выходила из состоявшихся высокотехнологичных проектов. Так, РОСНАНО успешно вышло из 15 проектов, получив рекордные поступления от инвестиций. В их числе такие знаковые высокотехнологические компании, как лидер российской солнечной энергетики «Хевел», национальная сеть центров ядерной медицины «ПЭТ-Технолоджи», разработчик и производитель чипов для высокоскоростного интернета Quantenna Communications.
В пресс-конференции также приняли участие члены Совета директоров АО «РОСНАНО» академик РАН Михаил Алфимов и основатель Matrix Capital Павел Теплухин.