Особенности строения
Рибосомы находятся на гранулярном эндоплазматическом ретикулуме или свободно плавают в цитоплазме. Крепятся они к эндоплазматической сети своей большой субъединицей и синтезируют белок, который выводится за пределы клетки, используется всем организмом. Цитоплазменные рибосомы в основном обеспечивают внутренние потребности клетки.
Форма шаровидная или овальная, в диаметре около 20нм.
На этапе трансляции к мРНК может прикрепляться несколько рибосом, образуя новую структуру – полисому. Сами же они образуются в ядрышке, внутри ядра.
Выделяют 2 вида рибосом:
- Малые – находятся в прокариотических клетках, а также в хлоропластах и митохондриальном матриксе. Они не связаны с мембраной и имеют меньшие размеры (в диаметре до 15нм).
- Большие – находятся в эукариотических клетках, могут достигать в диаметре до 23нм, связываются с эндоплазматической сетью или крепятся к мембране ядра.
Схема строения
Строение обоих видов идентичное. В состав рибосомы входят две субъединицы — большая и малая, которые в сочетании напоминают гриб. Объединяются они при помощи ионов магния, сохраняя между соприкасающимися поверхностями небольшую щель. При дефиците магния субъединицы отдаляются, происходит дезагрегация и рибосомы уже не могут выполнять свои функции.
Химический состав
Рибосомы состоят из высокополимерной рибосомальной РНК и белка в соотношении 1:1. В них сосредоточено примерно 90% всей клеточной РНК. Малая и большая субъединицы содержат около четырех молекул рРНК, которая имеет вид нитей собранных в клубок. Окружены молекулы белками и формируют вместе рибонуклеопротеид.
Полирибосомы – это объединение информационной РНК и рибосом, которые нанизываются на нить иРНК. В период отсутствия синтезирующих процессов, рибосомы разъединяются и обмениваются субъединицами. При поступлении иРНК они снова собираются в полирибосомы.
Количество рибосом может изменяться в зависимости от функциональной нагрузки на клетку. Десятки тысяч находятся в клетках с высокой митотической активностью (меристема растений, стволовые клетки).
Биосинтез белков на рибосомах
Трансляция или синтез белков на рибосомах с матрицы иРНК – конечный этап преобразования генетической информации в клетках. Во время трансляции информация, закодированная в нуклеиновых кислотах, переходит в белковые молекулы со строгой последовательностью аминокислот.
Трансляция – весьма непростой этап (в сравнении с репликацией и транскрипцией). Для проведения трансляции в процесс включаются все виды РНК, аминокислот, множество ферментов, которые могут исправлять погрешности друг друга. Самые важные участники трансляции – это рибосомы.
После транскрипции, новообразованная молекула иРНК, выходит из ядра в цитоплазму. Здесь после нескольких преобразований она соединяется с рибосомой. При этом аминокислоты приводятся в действие после взаимодействия с энергетическим субстратом – молекулой АТФ.
Аминокислоты и иРНК имеют разный химический состав и без постороннего участия не могут взаимодействовать между собой. Для преодоления этой несовместимости существует транспортная РНК. Под действием ферментов аминокислоты соединяются с тРНК. В таком виде они переносятся на рибосому и тРНК, с определенной аминокислотой, прикрепляется на иРНК в предназначенном месте. Далее рибосомальные ферменты формируют пептидную связь между присоединенной аминокислотой и строящимся полипептидом. После рибосома перемещается по цепи информационной РНК, оставляя участок для прикрепления следующей аминокислоты.
Рост полипептида идет до того момента, пока рибосома не встретит «стоп-кодон», который сигнализирует об окончании синтеза. Для освобождения новосинтезированного пептида от рибосомы включаются факторы терминации, окончательно завершающие биосинтез. К последней аминокислоте прикрепляется молекула воды, а рибосома распадается на две субъединицы.
Когда рибосома продвигается дальше по иРНК, она освобождает начальный отрезок цепи. К нему снова может присоединиться рибосома, которая начнет новый синтез. Таким образом, используя одну матрицу для биосинтеза, рибосомы создают одномоментно множество копий белка.
Методы выявления некоторых бактерий
Сальмонелла – патогенный бактериологический агент, который может инфицировать человека через пищу. Для своевременного изолирования зараженных продуктов и их утилизации разработан и утвержден ГОСТом в 1998 году метод выявления бактерий рода Salmonella в пищевых продуктах.
Суть метода состоит в следующем:
- Пробу продукта высевают на неселективную питательную среду (питательный бульон, на котором может расти большинство микроорганизмов).
- Посев выдерживается при стабильной температуре (инкубирование).
- Производят подбор селективной среды (той, на которой растут только сальмонеллы).
- Выполняют пересадку выросших бактериальных колоний на селективную для сальмонелл среду.
- Регистрируют результаты.
Бактерия Сальмонелла (Salmonella)
Методология определяет все нюансы проведения исследования: от количества проб до состава питательных сред и посуды, которая может использоваться работниками лаборатории для получения достоверных результатов их работы.
Оболочки клетки
Большинство бактерий имеет три оболочки:
- клеточная мембрана;
- клеточная стенка;
- слизистая капсула.
Непосредственно с содержимым клетки – цитоплазмой, соприкасается клеточная мембрана. Она тонкая и мягкая.
Клеточная стенка – плотная, более толстая оболочка. Её функция – защита и опора клетки. Клеточная стенка и мембрана имеют поры, через которые в клетку поступают необходимые ей вещества.
Многие бактерии имеют слизистую капсулу, которая выполняет защитную функцию и обеспечивает слипание с разными поверхностями.
Именно благодаря слизистой оболочке стрептококки (один из видов бактерий) прилипают к зубам и вызывают кариес.
Каркас для одноклеточных
Клеточная стенка выполняет формообразующую функцию, т. е. одновременно работает «скелетом» для клетки и заменяет ей кожу. Эта жесткая наружная оболочка:
- защищает бактериальные «внутренности»;
- отвечает за форму бактерий;
- транспортирует питательные вещества внутрь и выводит отходы наружу.
Встречаются бактериальные клетки округлой (кокки), извилистой (вибрионы, спириллы), палочкообразной формы. Есть микроорганизмы похожие на колбочки, звездочки, кубики или имеющие С-образный вид.
Механические и физиологические функции (защита и транспорт) бактериальной клеточной стенки зависят от ее строения. Изучать строение клеточной стенки удобно с помощью метода Грама. Этот датчанин предложил способ окраски бактерий анилиновыми красителями. В зависимости от реакции клеточной оболочки на краску различают:
- Грамположительные (поддающиеся окраске) бактерии. Их оболочка состоит из одного слоя, внешняя мембрана отсутствует.
- Грамотрицательные бактерии имеют оболочку, не удерживающую краситель (после промывки стенка обесцвечивается). Их наружная оболочка намного тоньше, чем у грамположительных, при этом она имеет два слоя – наружную мембрану и располагающуюся под ней бактериальную стенку.
Такое разделение бактерий имеет большое значение в медицинских исследованиях – чаще всего патогенные микробы имеют грамположительную стенку. Если анализ выявил грамположительные бактерии, то есть повод для переживаний. Грамотрицательные клетки намного безопасней. Некоторые из них постоянно присутствуют в организме и могут представлять угрозу только в случае неконтролируемого размножения. Это так называемые условно-патогенные бактерии.
Внешняя мембрана грамотрицательных бактерий расширяет функции бактериальной стенки. Меняется ее проницаемость и транспортные свойства. Внешняя мембрана имеет различные каналы (поры), избирательно пропускающие вещества внутрь клетки – полезные проходят свободно, а токсины отторгаются. То есть наружный слой грамотрицательной клетки выполняет функцию «решета» для молекул. Этим можно объяснить большую устойчивость грамотрицательных организмов к неблагоприятным условиям: всевозможным ядам, химическим веществам, ферментам, антибиотикам.
В биологии «слоенный пирог» из клеточной стенки и цитоплазматической мембраны называют клеточной оболочкой.
Методы изучения
Современные биологические лаборатории имеют широкие возможности для изучения клетки и ее органоидов.
В связи с тем, что рибосомные нуклеопротеиды представляют одну из наиболее интересных человеку структурных единиц клетки, сегодня есть достаточно методов выявления закономерностей устройства и функционирования этого органоида.
Одним из самых широко используемых методов выявления нуклеопротеидов в бактериях является рибосомальный профилинг.
Этот метод выполняют следующим образом:
- Разрушение бактериальной клетки путем механического воздействия на нее. Химические реакции в данном случае исказят картину.
- Разрушение молекул РНК, которые не входят в состав рибосомы.
- Удаление всех полипептидных остатков из тех продуктов, которые были получены в результате разрушения.
- Обратное преобразование РНК в ДНК.
- Чтение аминокислотных последовательностей.
Само секвенирование может реализовываться с помощью нескольких методов, в частности, двух самых распространенных.
Метод Эдмана
Один из первых разработанных. Суть этого метода состоит в том, что пептид (белок) обрабатывают определенными реагентами, в результате чего происходит отщепление аминокислоты, из которой состоит белок.
Метод Сэнгера
Наиболее современный метод. Основан на использовании синтетического олигонуклеотида (олигонуклеотиды состоят более чем из двух нуклеиновых кислот).
Используемый метод позволяет идентифицировать все, даже наиболее мелкие участки РНК, которая исследуется. Благодаря получению полной информации об аминокислотах исследователи имеют возможность восстанавливать наиболее важные операционные моменты биосинтеза.
Большое значение эта информация имеет при исследовании реакции бактерий на антибиотики.
Где образуются рибосомы
Составные части органоида образуются в ядрышке. Две субъединицы объединяются для начала химического процесса синтеза белка из цепи мРНК. Рибосома действует в качестве катализатора, образуя пептидные связи между аминокислотами. Использованная тРНК высвобождается обратно в цитозоль, в дальнейшем она может связываться с другой аминокислотой.
Органоид достигнет стоп-кодона мРНК (UGA, UAG и UAA), остановив процесс синтеза. Специальные белки (факторы терминации) прервут цепочку аминокислот, отделив ее от последней тРНК — формирование белка закончится.
Различные белки требуют некоторых модификаций, транспортировки в определенные области клетки до начала функционирования. Рибосома, прикрепленная к эндоплазматическому ретикулуму, поместит вновь образованный белок внутрь, он пройдет дополнительные модификации, будет должным образом свернут. Другие белки образуются непосредственно в цитозоли, где действуют как катализатор для различных реакций.
Рибосомы создают нужные клеткам белки, составляющие около 20 процентов состава клетки. Приблизительно в клетке находится 10 000 различных белков, приблизительно по миллиону копий каждого.
Рибосома эффективно и быстро участвует в синтезе, добавляя 3-5 аминокислот к белковой цепи в секунду. Короткие белки, содержащие несколько сотен аминокислот, могут быть синтезированы за считанные минуты.
Строение
На данный момент наука имеет убедительное количество проверенных опытным путем сведений о строении рибосом бактерий и эукариотов.
Это макромолекулярный комплекс, который состоит из двух субчастиц разной величины:
- малая субчастица;
- большая субчастица.
Малая рибосома состоит из одной рибосомной РНК и трех десятков разных белков. Основная функция малой субчастицы состоит в том, чтобы связывать нуклеопротеид с матричной РНК (мРНК).
В течение всего процесса инициации и элонгации (присоединение мономеров к цепи макромолекулы) малая субчастица удерживает мРНК. Кроме того, она обеспечивает прохождение матрицы через нуклеопротеоид.
Таким образом, малая субчастица выполняет генетическую функцию декодирования информации.
В большой субчастице содержится 3 рибосомных РНК и около 50 белковых соединений. Большая субчастица с матрицей не вступает в контакт, она ответственна за протекание химических процессов в нуклеопротеидах при образовании полипептидных связей в транслируемом полипептиде.
Строение
Важнейшей органеллой клетки является ядро. Оно содержит генетическую информацию и ядрышко, где образуются рибосомы. Синтезированные рибосомы через поры ядерной мембраны попадают либо на эндоплазматическую сеть, либо в цитоплазму. В зависимости от расположения в эукариотической клетке выделяют два вида рибосом:
- связанные – располагаются на эндоплазматической сети (шероховатый вид);
- свободные – располагаются в цитозоле.
Гладкая ЭПС образуется после освобождения от рибосом. В растительных клетках гладкая ЭПС формирует провакуоли, из которых затем образуются вакуоли.
Рис. 1. Расположение рибосом в клетке.
Рибосомы – немембранные органеллы, имеющие округлую форму и состоящие из двух частей – субъединиц (большой и малой), каждая из которых представляет собой смесь рибосомальной РНК (рРНК) и белков. С химической точки зрения рибосома – нуклеопротеид, состоящий из нуклеиновых кислот и протеинов.
Рис. 2. Строение рибосом.
Связанные и свободные рибосомы называются цитоплазматическими рибосомами. Также существуют собственные рибосомы митохондрий и пластид. Они отличаются меньшим количеством белков и рРНК.
Различают четыре разновидности молекул РНК рибосомы:
- 18S-РНК – содержит 1900 нуклеотидов;
- 5S-РНК – содержит 120 нуклеотидов;
- 5,8S-РНК – состоит из 160 нуклеотидов;
- 28S-РНК – состоит из 4800 нуклеотидов.
Малая частица рибосомы образована 30-35 белками и 18S-РНК. В большую субчастицу входит 45-50 белков и 5S-, 5,8S-, 28S-РНК.
В нерабочем состоянии части рибосом разъединены. Они соединяются с помощью информационной (матричной) РНК, обхватывая её с двух сторон. При синтезе белка рибосомы объединяются, образуя комплексы – полисомы или полирибосомы, связанные мРНК и напоминающие бусины на нитке.
Рибосомы прокариот меньше, чем эукариот. Диаметр рибосом клетки человека, животных, растений и грибов – 25-30 нм, бактерий – 15-20 нм.
Что такое ЦПМ и мезосомы
Между клеточной стенкой и цитоплазмой расположен еще один органоид – цитоплазматическая мембрана (ЦПМ). В ее функции входит ограничение внутреннего содержимого клетки, поддержание ее формы, защита от проникновения агрессивных факторов и беспрепятственный допуск питательных веществ. По сути, это еще одно молекулярное «сито».
Через цитоплазматическую мембрану свободно проходят электроны (энергия) и транспорт материалов, необходимых для существования клетки. Различают два активных процесса, протекающих через мембрану:
- эндоцитоз – проникновение веществ внутрь бактерии;
- экзоцитоз – выведение отходов.
В процессе эндоцитоза мембрана образует внутренние складки, которые затем трансформируются в пузырьки (вакуоли). В зависимости от выполняемых функций различают два вида эндоцитоза:
- Фагоцитоз («поедание»). Эта функция доступна некоторым видам бактерий, их называют фагоцитами. Такие клетки создают из цитоплазматической мембраны своеобразный мешок, обволакивающий поглощаемую частицу (фагоцитозную вакуоль). Примером могут служить лейкоциты крови, «съедающие» чужеродные частицы или бактерии.
- Пиноцитоз («выпивание») – это поглощение жидкостей. При этом образуются пузырьки различного размера, иногда очень мелкие.
Экзоцитоз (выведение) действует в противоположном направлении. С его помощью из клетки выводятся непереваренные остатки и клеточный секрет.
Помимо этого, цитоплазматическая мембрана:
- регулирует давление жидкости внутри клетки;
- принимает и обрабатывает химическую информацию извне;
- участвует в процессе деления клетки;
- отвечает за отращивание жгутиков и их движение;
- регулирует синтез клеточной стенки.
Внутренняя бактериальная мембрана в зависимости от выполняемых клеткой функций образует мезосомы (внутренние складки). Примером могут служить ламеллы и тилакоиды в одноклеточных, живущих за счет фотосинтеза. Тилакоиды представляют собой стопки плоских мешочков, образованных внутренними складками мембраны (мезосомами), в которых протекает фотосинтез, а ламеллы – это те же вытянутые в длину мезосомы, соединяющие между собой стопки тилакоидов.
У грамположительных бактерий мезосомы хорошо развиты и довольно сложно организованы, в отличие от грамположительных. Различают три вида мезосом:
- пластинчатые (ламеллы);
- пузырьки (везикулы с запасом питательных веществ);
- трубочки (тубулярные мезосомы).
Микробиологи пока не пришли к окончательному выводу – являются ли мезосомы основной структурой бактериальной клетки или только усиливают выполняемые ею функции.
Внутреннее строение бактерий
Рис. 13. На фото строение бактериальной клетки. Строение клетки бактерии отличается от строения клеток животных и растений — в клетке отсутствует ядро, митохондрии и пластиды.
Цитоплазма
Цитоплазма на 75% состоит из воды, остальные 25% приходится на минеральные соединения, белки, РНК и ДНК. Цитоплазма всегда густая и неподвижная. В ней содержатся ферменты, некоторые пигменты, сахара, аминокислоты, запас питательных веществ, рибосомы, мезосомы, гранулы и всевозможные другие включения. В центре клетки концентрируется вещество, которое несет наследственную информацию — нуклеоид.
Мезосомы
Мезосомы — производные клетки. Имеют разную форму — концентрические мембраны, пузырьки, трубочки, петли и др. Мезосомы имеют связь с нуклеоидом. Участие в делении клетки и спорообразовании — их основное предназначение.
Нуклеоид
Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.
Рис. 14. На фото срез бактериальной клетки. В центральной части виден нуклеотид.
Плазмиды
Плазмиды представляют собой автономные молекулы, свернутые в кольцо, двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.
Рис. 15. На фото бактериальная плазмида. Фото сделано с помощью электронного микроскопа.
Рибосомы
Рибосомы бактериальной клетки участвуют в синтезе белка из аминокислот. Рибосомы бактериальных клеток не объединены в эндоплазматическую сеть, как у клеток, имеющих ядро. Именно рибосомы часто становятся «мишенью» для многих антибактериальных препаратов.
Включения
Включения — продукты метаболизма ядерных и безъядерных клеток. Представляют собой запас питательных веществ: гликоген, крахмал, сера, полифосфат (валютин) и др. Включения часто при окраске приобретают иной вид, чем цвет красителя. По валютину можно диагностировать дифтерийную палочку.
Роль цитоплазматической мембраны и ее образований
Цитоплазматическая мембрана – важная часть клетки, которая обеспечивает связь между цитоплазмой и клеточной стенкой.
Выявить цитоплазматическую мембрану окрашиванием не представляется возможным. Кроме того, в этом нет никакой практической необходимости, поскольку цитоплазматическая мембрана – обязательная структура каждой бактериальной клетки.
Цитоплазматическая мембрана имеет практически всегда один и тот же биохимический состав. Для изучения структур клетки и ее включений необходимо изучение проводящих функций цитоплазматической мембраны. Эти исследования осуществляются такими бактериологическими методами, как молекулярно-генетический и серологический.
Какую функцию выполняют рибосомы
Назначение описываемого органоида в любой клетке заключается в осуществлении синтеза белков. Белки используются практически всеми клетками:
- в качестве катализаторов — ускоряют время реакции;
- в качестве волокон — обеспечивают стабильность клетки;
- многие белки имеют индивидуальные задачи.
Основным хранилищем информации в клетках служит молекула дезоксирибонуклеиновой кислоты (ДНК). Специальный фермент, РНК-полимераза, связывается с молекулой ДНК и создает «зеркальную копию» — матричную рибонуклеиновую кислоту (мРНК), свободно перемещающуюся из ядра в цитоплазму клетки.
Цепочка рибонуклеиновой кислоты обрабатывается при выходе из ядра; области РНК, которые не кодируют белки, удаляются; мРНК используется для дальнейшего синтеза белка.
Каждая мРНК состоит из 4 различных нуклеиновых кислот, тройки которых составляют кодоны. Каждый кодон определяет специфическую аминокислоту. В организме всех живых существ на Земле встречаются 20 аминокислот. Кодоны, используемые для спецификации аминокислот, почти универсальны.
Кодон, запускающий все белки — «AUG», последовательность нуклеиновых оснований:
- аденин;
- урацил;
- гуанин.
Специальная молекула РНК поставляет аминокислоты для синтеза — транспортная РНК или тРНК. К активному кодону подходит тРНК, несущая соответствующую аминокислоту, ассоциируется с ним. Происходит образование пептидной связи новой аминокислоты со строящимся белком.
Как устроена бактерия
Бактериальный организм – это всего лишь одна клетка. Вместо привычных органов, отвечающих за те или иные функции, у нее есть только своеобразные включения, именуемые органеллами. Их набор может быть различным в зависимости от вида клетки или условий ее существования, но некий обязательный комплект внутренних структур в бактерии присутствует постоянно. Именно они характеризуют клетку как бактериальную.
Бактериальная клетка относится к прокариотам – безъядерным одноклеточным организмам. Это означает, что в ее строении отсутствует мембрана, отделяющая ядро от цитоплазмы. Роль ядра в бактерии выполняет нуклеоид (замкнутая молекула ДНК). В прокариотической клетке есть основные и дополнительные органеллы (структуры). К ее основным структурам относят:
- нуклеоид;
- клеточную стенку (грамположительный или грамотрицательный защитный слой);
- цитоплазматическую мембраны (тонкую прослойку между клеточной стенкой и цитоплазмой);
- цитоплазму, в которой находятся нуклеоид и рибосомы (молекулы РНК).
Дополнительными органеллами (органоидами) клетка обзаводится при неблагоприятных условиях. Они могут появляться и исчезать в зависимости от окружающей среды. К необязательным структурам клетки относят капсулы, пили, споры, различные включения типа плазмид или зерен волютина.
Оборудование микробиологической лаборатории
Возможность применять методы выявления клеток бактерий может присутствовать только в рамках организации бактериологической лаборатории. Это специально оборудованные комплексы, которые функционируют:
- при поликлиниках и диспансерах;
- при санитарно-эпидемиологических станциях или их подразделениях;
- при научно-исследовательских центрах;
- при предприятиях по выпуску биопрепаратов.
Практически все перечисленные лаборатории работают с прокариотами низкой и средней степени вирулентности (опасности для человека). Опасные бактерии можно исследовать только в специализированных лабораториях.
Основу лаборатории составляют:
- термостат для регулировки и поддержания стабильных температурных режимов;
- микроанаэростат для поддержания анаэробной среды;
- холодильник для хранения сред, проб и микроорганизмов;
- центрифуги для осаждения исследуемого материала со стенок пробирок;
- печь Пастера для воздушной стерилизации лабораторных приборов;
- автоклав для стерилизации под давлением.
Кроме перечисленных аппаратов, лаборатория также оснащена микроскопами, планшетами, дозирующими приборами, наконечниками и бактериологическими анализаторами в зависимости от специфики лаборатории.
Окраска спор
Определенные сложности связаны с выявлением таких кислотоустойчивых структур бактерий, как споры.
Однако выявление спор является важным моментом, поскольку спороносные бактерии чаще всего обладают высокой патогенностью. Кроме того, ввиду повышенной кислотоустойчивости, тепло- и светоустойчивости, споры очень сложно ликвидировать.
Для выявления спор были разработаны специальные протравы, которые разрыхляют кислотоустойчивую оболочку, что позволяет красителю проникнуть внутрь.
Окрашивание спор по методу Меллера:
- мазок помещают на две минуты в хлороформ;
- обрабатывают 5% водным раствором хромовой кислоты;
- промывают в воде и окрашивают карболовым фуксином.
- споры окрашиваются в красный цвет.
Есть еще несколько методов выявления таких клеточных структур, как споры, и все они предполагают первоначальное воздействие на устойчивую стенку споры.
Listeria monocytogenes – возбудитель бактериальной инфекции листериоза
При поражении человеческого организма Listeria monocytogenes становятся внутриклеточными паразитами (бактериальные клетки проникают внутрь эукариотических). Через некоторое время их обнаруживают в клетках практически всех внутренних органов человека, поскольку эти бактерии распространяются через кровь.
По этой причине симптомы бактериального заражения могут проявляться в разной форме: ангина, менингит, конъюнктивит и т.д., любые формы сепсиса (заражения внутренних органов).
Для предотвращения этой бактериальной угрозы разработаны и утверждены методы выявления Listeria monocytogenes в пищевых продуктах.
Для целей выявления Listeria monocytogenes нормативные акты определяют их как грамположительные неспорообразующие бактериальные палочки, которые растут на плотных селективных средах. Формы их колоний – короткие цепочки, иногда длинные нити.
Listeria monocytogenes
Технология метода:
- Для исследования отбирается проба, которая рассеивается на питательной среде, подходящей для большого количества микроорганизмов, и инкубируется в течение суток при температуре 30°С.
- В связи с тем, что чаще всего Listeria monocytogenes находится в продукте в небольшом количестве, на следующем этапе их выявления имеющуюся среду обогащают специально подобранными для Listeria monocytogenes питательными элементами (делают питательную среду более селективной) и выдерживают в течение 2-х суток при температуре 37°С.
- Полученные колонии пересевают на две питательные среды: по Оттавиани и Агости (ALOA) и одну из трех (Оксфорд агар, Палкам агар, ПАЛ – питательный агар для выделения листерий). Первый посев инкубируют сутки при температуре 37°С, после чего регистрируют наличие или отсутствие колоний, характерных для Listeria monocytogenes. Второй посев выдерживают чуть дольше (на 3 часа) и также регистрируют возможные проявления колоний Listeria monocytogenes.
Возможные проявления наличия бактериальных колоний Listeria monocytogenes выглядят следующим образом:
- Колонии клеток имеют сине-зеленую окраску. Кроме того, вокруг колонии наблюдается непрозрачный ореол.
- Поврежденные бактериальные клетки не дают характерного ореола или он только едва заметен.
- На ПАЛ-агаре колонии имеют серо-зеленый или оливково-зеленый цвет. Их окружает ореол черного цвета. Иногда колония имеет черный центр.
После выявления колоний Listeria monocytogenes их начинают изучать более подробно:
- производят реакцию на каталазу;
- окрашивают по Граму;
- определяют подвижность;
- проверяют на бета-гемолитическую активность и т.д.
Также сегодня в лабораториях есть материал для проведения экспресс-анализов по специализированным таблицам, которые изготавливаются под каждый вид продуктов либо другого исследуемого материала. Их можно приобрести в специализированных магазинах, как и другое лабораторное оборудование.
Обнаружение капсул
Капсула также является клеточной структурой, которая присуща не всем бактериям и по которой прокариота можно идентифицировать.
Методы выявления капсул также основаны на окрашивании органическими анилиновыми красителями.
Окраска капсулы по Романовскому-Гимзе происходит по следующей технологии:
- На предметное стекло наносится мазок разведенной чистой культуры.
- Стекло устанавливается мазком вниз в чашку Петри на стеклянные подставки.
- В чашку Петри добавляют 20 капель краски Романовского-Гимзе.
- Через 15-20 минут предметное стекло промывают и высушивают.
- В результате бактерии окрашиваются в темно-синий цвет, а капсулы приобретают розовую окраску.
Окраска по Михину – выявление капсул при помощи метиленовой сини Леффера. При этой окраске капсулы также приобретают розовый цвет, а бактерии – синий.
Особенности окраски капсул связаны с их составом. Капсула состоит из полисахаридов или полипептидов (капсула сибирской язвы), которые быстро вступают в реакцию с теми красителями, которые используются в лабораториях.
Где и зачем искать?
Проверять пищу человека на содержание в ней разных видов микроорганизмов – общеизвестная задача микробиологических исследований на выявление штаммов бактерий с разной степенью вирулентности.
Однако ввиду стремительного развития биотехнологий, необходимость выявлять определенные виды микроорганизмов может возникать в самых разных отраслях жизнедеятельности человека:
- медицина и ветеринария;
- фармацевтика;
- пищевая промышленность;
- сельское хозяйство и переработка сельскохозяйственных продуктов;
- химическая промышленность.
Кроме того, выявление прокариотов с целью их изучения – одна из самых актуальных задач микробиологов, которые сегодня только начинают знакомиться с огромным разнообразием представителей безъядерной органики.
При работе с тем или иным биологическим материалом в микробиологических лабораториях используются несколько основных методов:
- микроскопия (световая, электронная);
- биологические методы (культивирование и идентификация организмов);
- молекулярно-генетический метод;
- серологический (выявление антигенов).
Эти основные методы позволяют не только обнаружить не видимые невооруженным глазом бактериальные клетки, а и изучить их структурные элементы и фазы жизнедеятельности.
Данные о структуре и жизненных процессах изучаемых бактерий позволяют идентифицировать выделенный биологический материал и соотнести его с теми видами прокариотов, которые уже описаны в микробиологической литературе или же зарегистрировать открытие новых видов безъядерных организмов.