ВНИМАНИЕ! САЙТ ЛЕКЦИИ.ОРГ проводит недельный опрос. ПРИМИТЕ УЧАСТИЕ. ВСЕГО 1 МИНУТА!!!
1Следующая ⇒
Методические указания к проведению лекционного занятия
Раздел 2. Функционально-технологические свойства основных веществ пищевых продуктов и их изменение под влиянием кулинарной обработки
Тема № 2Функциональные свойства белков и их биологическая
Ценность. Процессы гидратации и дегидратации.
План:
1. Значение белков и аминокислот в питании. Строение и химическая природа белков.
2. Функциональные свойства белков.
3. Понятие биологической ценности белков, аминокислотный скор.
4. Физико-химические изменения белков, протекающие при технологических процессах производства кулинарной продукции: гидратация, дегидратация.
«Жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка»
(Ф. Энгельс)
Значение белков и аминокислот в питании. Строение и химическая природа белков
Белок – главный пластический материал, необходимый не только для возмещения белковых трат в процессе жизнедеятельности, но и для формирования новых клеток, то есть для роста и развития. Попадая в организм, белки расщепляются под воздействием ферментов до аминокислот, часть из которых распадается на органические кетокислоты; из них вновь синтезируются необходимые организму аминокислоты, белки и вещества белковой природы. Белки – составная часть ферментов, гормонов и др. жизненноважных систем. Недостаточное поступление с пищей белков нарушает динамическое равновесие метаболических белковых процессов, сдвигая их в сторону преобладания распада собственных белков тела, что приводит в конечном итоге к истощению организма. Белковая недостаточность представляет особую опасность для растущего организма, в частности уменьшение белка в рационе до 3% рекомендуемых норм вызывает полную остановку роста, снижение массы тела, изменение химического состава костей.
Биологические функции белков: структурная (кератин волос, ногтей, коллаген соединительной ткани), каталитическая (ферменты), транспортная (гемоглобин, миоглобин), защитная (антитела, фибриноген крови), сократительная (актин, миозин мышечной ткани), гормональная (инсулин, гормон роста, гастрин желудка) и резервная (казеин молока, овоальбумин яйца).
Белки (протеины, от греч. рrotos –первый, важный) – природные полимеры, в которых аминокислоты связаны пептидной связью (-СО-NH-). Термин «протеины» впервые был введен в 1838 г Берцелиусом и достаточно точно отражает главенствующее биологическое значение данного класса соединений.
Аминокислоты – полифункциональные соединения, содержащие, по меньшей мере, две разные химические группировки (-СООН и –NН2), способные реагировать друг с другом с образованием ковалентной (пептидной связи) (-СО-NH-). Аминокислоты являются амфотерными: обладают свойствами кислоты и щелочи.
По форме молекулы белки делятся на: глобулярные (сферопротеины), цепочки аминокислот в которых свернуты в глобулы и фибриллярные (склеропротеины) – волокнистые белки. По строению белки делятся на:
– протеины – простые белки, состоящие только из остатков аминокислот (альбумины, растворимые в воде, глобулины, растворимые в солевых растворах, проламины, растворимые в спирте и глютелины, растворимые в щелочах).
– протеиды – сложные белки, состоящие из белковой и небелковой частей (глюкопротеиды – белок+углеводы, фосфопротеиды – белок +фосфорная кислота – казеин молока и др.)
По пространственному строению различают:
1. Первичная структура белка – последовательное соединение остатков аминокислот в цепочку за счет пептидной связи;
2. Вторичная структура – закручивание цепочек аминокислот в спирали. Скручивание происходит за счет образования водородных связей.
3. Третичная – свертывание спиралей в глобулы. В образовании данной структуры имеют значение полярные и неполярные группы. Общим признаком пространственного расположения остатков аминокислот является локализация гидрофобных групп внутри молекулы, а гидрофильных – на ее поверхности.
4. Четвертичная – объединение нескольких глобул в более крупную частицу. Она представляет собой комбинацию субъединиц с одинаковой или разной первичной, вторичной и третичной структурой. Субъединицы соединены между собой с помощью слабых ковалентных связей.
1Следующая ⇒
Дата добавления: 2017-03-12; просмотров: 819 | Нарушение авторских прав | Изречения для студентов
Аминокислоты
Аминокислоты (см. Рис. 1) – органические соединения, в молекулах которых одновременно присутствует аминогруппа () с основными свойствами и карбоксильная группа () с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение.
Рис. 1. Аминокислота
В зависимости от радикала аминокислоты делят на (см. Рис. 2):
1. кислые (в радикале карбоксильная группа);
2. основные (в радикале аминогруппа);
3. нейтральные (не имеют заряженных радикалов).
Рис. 2. Классификация аминокислот
Аминокислоты соединяются друг с другом посредством пептидной связи. Эта связь образуется путем выделения молекулы воды при взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой аминокислоты. Реакция, идущая с выделением воды, называется реакцией конденсации, а возникающая ковалентная азот-углеродная связь – пептидной связью.
Рис. 3. Дипептид
Соединения, образующиеся в результате конденсации двух аминокислот, представляют собой дипептид (см. Рис. 3). На одном конце его молекулы находится аминогруппа, а на другом – свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие молекулы. Если таким образом соединяется много аминокислот, то образуется полипептид (см. Рис. 4).
Рис. 4. Полипептид
Полипептидные цепи бывают очень длинными и могут состоять из различных аминокислот. В состав белковой молекулы может входить как одна полипептидная цепь, так и несколько таких цепей.
Многие животные, включая человека, в отличие от бактерий и растений не могут синтезировать все аминокислоты, которые составляют белковые молекулы. То есть существует ряд незаменимых аминокислот, которые должны поступать с пищей.
К незаменимым аминокислотам относятся: лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, тирозин, метионин.
Страницы
- Главная страница
- ОСНОВЫ ОБЩЕЙ ХИМИИ
- 1.1 Важнейшие классы неорганических веществ
- 2.1 Вещества. Атомы
- 2.2 Размеры атомов
- 2.3 Молекулы. Химические формулы
- 2.4 Простые и сложные вещества
- 2.5 Валентность элементов
- 2.6 Моль. Молярная масса
- 2.7 Закон Авогадро
- 2.8 Закон сохранения массы веществ
- 2.9 Вывод химических формул
- 3.1 Строение атома. Химическая связь
- 3.2 Строение атома
- 3.4 Строение электронной оболочки атома
- 3.5 Периодическая система химических элементов
- 3.6 Зависимость свойств элементов
- 3.7 Химическая связь и строение вещества
- 3.8 Гибридизация орбиталей
- 3.9 Донорно-акцепторный механизм образования
- 3.10 Степени окисления элементов
- 4.1 Классификация химических реакций
- 4.2 Тепловые эффекты реакций
- 4.3 Скорость химических реакций
- 4.4 Необратимые и обратимые реакции
- 4.5 Общая классификация химических реакций
- НЕОРГАНИЧЕСКАЯ ХИМИЯ
- 5.1 Растворы. Электролитическая диссоциация
- 5.2 Количественная характеристика состава растворов
- 5.3 Электролитическая диссоциация
- 5.4 Диссоциация кислот, оснований и солей
- 5.5 Диссоциация воды
- 5.6 Реакции обмена в водных растворах электролитов
- 5.7 Гидролиз солей
- 6.1 Важнейшие классы неорганических веществ
- 6.2 Кислоты, их свойства и получение
- 6.3 Амфотерные гидроксиды
- 6.4 Соли, их свойства и получение
- 6.5 Генетическая связь между важнейшими классами
- 6.6 Понятие о двойных солях
- 7.1 Металлы и их соединения
- 7.2 Электролиз
- 7.3 Общая характеристика металлов
- 7.4 Металлы главных подгрупп I и II групп
- 7.5 Алюминий
- 7.6 Железо
- 7.7 Хром
- 7.8 Важнейшие соединения марганца и меди
- 8.1 Неметаллы и их неорганические соединения
- 8.2 Водород, его получение
- 8.3 Галогены. Хлор
- 8.4 Халькогены. Кислород
- 8.5 Сера и ее важнейшие соединения
- 8.6 Азот. Аммиак. Соли аммония
- 8.7 Оксиды азота. Азотная кислота
- 8.8 Фосфор и его соединения
- 8.9 Углерод и его важнейшие соединения
- 8.10 Кремний и его важнейшие соединения
- ОРГАНИЧЕСКАЯ ХИМИЯ
- 9.1 Основные положения органической химии. Углеводороды
- 9.2 Электронные эффекты заместителей в органических соединениях
- 9.3 Предельные углеводороды (алканы)
- 9.3.1 Насыщенные УВ. Метан
- 9.4 Понятие о циклоалканах
- 9.5 Непредельные углеводороды
- 9.6 Диеновые углеводороды (алкадиены)
- 9.7 Алкины
- 9.8 Ароматические углеводороды
- 9.9 Природные источники углеводородов
- 10.1 Кислородсодержащие органические соединения
- 10.2 Фенолы
- 10.3 Альдегиды
- 10.4 Карбоновые кислоты
- 10.5 Сложные эфиры. Жиры
- 10.6 Понятие о поверхностно-активных веществах
- 10.7 Углеводы
- 11.1 Амины. Аминокислоты
- 11.2 Белки
- 11.3 Понятие о гетероциклических соединениях
- 11.4 Нуклеиновые кислоты
- 12.1 Высокомолекулярные соединения
- 12.2 Синтетические волокна
Значение свободных аминокислот
Ежегодно в мире производится более двухсот тысяч тонн аминокислот, которые используются в практической деятельности человека. Они применяются в медицине, парфюмерии, косметике, сельском хозяйстве.
В большей степени производят глутаминовую кислоту и лизин, а также глицин и метионин.
Назначение аминокислот
1. Глутаминовая кислота
Используется в психиатрии (при эпилепсии, для лечения слабоумия и последствий родовых травм), в комплексной терапии язвенной болезни и при гипоксии. Также она улучшает вкус мясных продуктов.
2. Аспарагиновая кислота
Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин – препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.
3. Метионин
Защищает организм при отравлениях бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды. Обладает радиопротекторными свойствами.
4. Глицин
Является медиатором торможения в центральной нервной системе. Используется как успокаивающее средство, применяется при лечении хронического алкоголизма.
5. Лизин
Основная пищевая и кормовая добавка. Используется в качестве антиоксидантов в пищевой промышленности (предотвращает порчу пищевых продуктов).
Что такое белок?
Несмотря на то, что углерод является основным компонентом всего, что есть на нашей планете, именно наличие белка отличает живой организм от неживого объекта. На текущий момент науке известно более 30 тысяч различных белков. Одна пятая часть тела человека состоит из белка. Почти все органы и ткани содержат белок. Больше всего его в мышцах (более 50% от общего количества), одна треть в костях и хрящах, одна десятая часть – волосах и ногтях (при этом белок кератин, из которого они состоят, не усваивается нашим организмом). Сосуды на 85% состоят из белка, лёгкие — на 82%, почки — на 72%, печень – на 57%, мозг – на 45%. Только желчь и моча в норме не содержат белок.
Самые распространенные классификации белков:
— животные, растительные и бактериальные;
— простые и сложные.
На химическом уровне белки – это сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты. Поэтому, когда мы говорим о белке, мы на самом деле говорим об аминокислотах, из которых тот или иной белок состоит.
Аминокислот в природе насчитано на сегодняшний день более 150. В составе человеческого тела и в пище, которая нам необходима, их всего 20, но и они дают огромное количество сочетаний (пример этому – многообразие наших органов и тканей). Пищевые белки в свою очередь делятся на незаменимые, то есть те, которые не синтезируются нашим организмом и поэтому должны обязательно поступать с пищей, и заменимые – они могут быть получены из незаменимых аминокислот.
К незаменимым аминокислотам относят:
В одном яйце содержится почти 7 грамм белка
- Лейцин
- Изолейцин
- Лизин
- Метионин
- Фенилаланин
- Треонин
- Триптофан
- Валин
- Гистидин
Последний является незаменимым только у новорожденных детей, а у взрослых он может синтезироваться, поэтому в некоторых классификациях вы можете увидеть другое соотношение незаменимых аминокислот к заменимым (8:12).
Заменимые аминокислоты:
Молочные продукты — ценный источник белка
- Глицин
- Аргинин
- Пролин
- Серин
- Цистеин
- Глутамин
- Глутаминовая кислота
- Аспарагиновая кислота
- Аланин
- Тирозин
- Аспарагин
Хочу подчеркнуть, то название «заменимые» они носят, скорее, условно: несмотря на то, что организм может их синтезировать, они всё равно обязательно должны поступать с пищей, так как потребность в белке может не перекрываться имеющимися в теле синтезированными аминокислотами. Например, достаточное количество в пище заменимой аминокислоты тирозин сберегает запасы незаменимой аминокислоты фенилаланин, из которой мы его можем синтезировать. А если тирозина поступает недостаточно, то он автоматически становится незаменимой аминокислотой
Это особенно важно учитывать тем, кто увлекается всякого рода моно-диетами
Что такое скорректированный аминокислотный скор?
Одним из самых важных показателей полноценности белка является его скорректированный аминокислотный скор усвояемости. Этот показатель представляет собой процентное отношение определенной незаменимой аминокислоты в конкретном продукте к схожей аминокислоте в искусственном идеальном белке. Говоря проще, это сравнение исследуемого белка с эталонным (рассчитанным учёными) белком. Самый высокий скор (1.00), помимо идеального белка, у казеина (белка, входящего в состав всех молочных продуктов), яичного и соевого белка — то есть, они усвоятся на 100%. Говядина и курятина имеют коэффициент 0.92, рыба – 0.90, у нута (турецкого гороха) – 0.78, у фруктов – 0.76 (да, я тоже была удивлена: в них хоть и мало белка, зато он усваивается аж на 76%). Фасоль имеет скор 0.75, овощи – 0.73. Всё, что ниже 0.73, считается продуктом с низким скором.
Для сравнения, всё-таки приведу основные продукты, так как они являются для нас частым источником белка: 0.70 – прочие бобовые; 0.66 – гречка; 0.63 – рожь и нежирная свинина; 0.55 – рис; 0.54 – пшеница; 0.52 – арахис; 0.42 – цельное зерно, и т.д.
Welcome: Your first projectCreate bar charts
Усвоение любого белка зависит не просто от количества разных аминокислот в нем, а еще и от количества так называемых лимитирующих незаменимых аминокислот. Лимитирующие аминокислоты – это те аминокислоты, которые входят в состав продукта в наименьшем количестве по сравнению с их физиологической потребностью. Эта характеристика в основном относится к белкам растительного происхождения и должна учитываться, если питание у вас строго вегетарианское (когда животные продукты исключены полностью), а также во время христианских религиозных постов (о том, как сбалансировать постный рацион, читайте здесь). Существуют определенные комбинации растительных белков, при которых не возникает дефицита в аминокислотах, и я постараюсь осветить подробнее эти моменты в отдельной статье.
О других факторах, влияющих на усвоение белка, и о том, как строить свой белковый рацион, я расскажу вам в следующий раз.
Оставайтесь на связи!
Структуры белка
Белки имеют 4 основных структуры: первичную, вторичную, третичную, четвертичную (см. Рис. 5).
Рис. 5. Структура белка
1. Под первичной структурой понимают последовательность аминокислотных остатков в полипептидной цепи. Она уникальна для любого белка и определяет его форму, свойства и функции.
Значительное совпадение первичной структуры характерно для белков, выполняющих сходные функции. Замена всего лишь одной аминокислоты в одной из цепей может изменить функцию молекулы белка. Например, замена глутаминовой кислоты на валин приводит к образованию аномального гемоглобина и к заболеванию, которое называется серповидноклеточная анемия.
2. Вторичная структура – упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей.
3. Третичная структура – укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков.
4. Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами.
Утрата белковой молекулой своей природной структуры называется денатурацией. Она может возникнуть при воздействии температуры, химических веществ, при нагревании и облучении.
Если при денатурации не нарушены первичные структуры, то при восстановлении нормальных условий белок способен воссоздать свою структуру. Этот процесс носит название ренатурация (см. Рис. 6). Следовательно, все особенности строения белка определяются первичной структурой.
Рис. 6. Денатурация и ренатурация
Белки
Среди органических соединений клетки белки являются наиболее важными. Содержание белков в клетке колеблется от 50 % до 80 %.
Белки – это высокомолекулярные органические соединения, которые состоят из углерода, водорода, кислорода, серы и азота. В состав некоторых белков входит фосфор, а также катионы металлов.
Белки являются биополимерами, которые состоят из мономеров аминокислот. Их молекулярная масса варьируется от нескольких тысяч до нескольких миллионов, в зависимости от количества аминокислотных остатков.
В состав белков входит всего 20 типов аминокислот из 170, найденных в живых организмах.
Зачем нам белок?
Основные функции белка в нашем организме – пластические (строительство большинства наших тканей). Помимо этого, белки участвуют в процессе катаболизма (что это такое, мы с вами выясняли здесь), так как входят в состав большинства ферментов. Наши антитела – это тоже белки (например, иммуноглобулины и интерферон), следовательно, белки – это часть нашего иммунитета. Помимо этого, белки участвуют в создании онкотического тока крови, в дыхании (белок глобин – часть всем известного гемоглобина), входят в состав гормонов, образуют более сложные соединения вместе с другими веществами, и естественно, дают энергию.
У каждой аминокислоты своя роль в нашем организме. Аминокислоты могут выступать как предшественники многих гормонов, участвовать в процессах глюконеогенеза (получения энергии из неуглеводных источников), могут быть донорами для многих реакций и процессов синтеза, переносчиками азота, жирных кислот и других веществ.
То есть, чтобы всё это великое множество важных функций в нашем теле успешно выполнялось, поступающие аминокислоты должны быть разнообразны. Единственным источником образования белков в организме служат белки пищи. Поэтому, нам крайне желательно получать белки из различных групп продуктов – так мы обезопасим себя от нехватки аминокислот. Белки пищи различаются по количеству аминокислот того или иного типа, и это во многом обусловливает их полное или неполное усвоение и нашу в них потребность.
Какой белок является качественным?
Качество пищевого белка определяется наличием в его составе полного набора незаменимых аминокислот в определенном количестве и определенном соотношении с заменимыми аминокислотами. Соответственно, белки бывают полноценными (содержат все 20 аминокислот) или неполноценными (в них какие-то аминокислоты отсутствуют). Это качество для каждого конкретного белка просчитывается отдельно, для чего используются различные биологические и химические методы, характеризующие тот или иной аспект употребления белка (например, определение биологической ценности белка, его чистой утилизации, коэффициента эффективности и аминокислотного скора белка).
На наше счастье, ученые уже проанализировали основные виды потребляемого в пищу белка и нам не надо каждый раз бежать с купленным продуктом в лабораторию – достаточно воспользоваться сетью интернет и найти данные по тому или иному белку
Что нам важно учитывать при планировании нашего белкового рациона, так это следующие четыре основных момента:
— белки должны давать нам 10-15% от всей калорийности рациона (о том, почему не больше, мы поговорим с вами в следующей статье),
— нам стоит использовать максимально широкий ассортимент продуктов — источников белка (как животного, так и растительного происхождения),
— для того, чтобы понять, насколько полноценно мы усвоим съеденный белок, мы смотрим на скорректированный аминокислотный скор усвояемости белков в конкретном пищевом продукте (таблицы доступны в интернете, но про основные продукты я вам расскажу ниже),
— учитываем, что сильная тепловая (и определенная химическая) обработка снижает количество белка в блюде в среднем на 6% — это важно, если вы высчитываете КБЖУ рациона.
Заключение
Существуют различные формы заболевания. В самой тяжелой форме у человека происходит задержка развития, такие люди не доживают до подросткового возраста.
Список литературы
- Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
- Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
- Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
- Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Vmede.org (Источник).
- Youtube.com (Источник).
- Bio-faq.ru (Источник).
Домашнее задание
- Вопросы 1-6 в конце параграфа 11 (стр. 46) – Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс (Источник)
- Какие функциональные группы входят в состав аминокислот?