Классификация оснований
Основания можно классифицировать по следующим признакам:
- По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
- По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
- По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
- По силе (по степени диссоциации) различают:
а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
б) слабые (α 2, Fe(OH)3 и растворимое NH4OH.
Взаимодействие алюминия со сложными веществами
с водой
Как уже было сказано выше, стойкая и прочная оксидная пленка из Al2O3 не дает алюминию окисляться на воздухе. Эта же защитная оксидная пленка делает алюминий инертным и по отношению к воде. При снятии защитной оксидной пленки с поверхности такими методами, как обработка водными растворами щелочи, хлорида аммония или солей ртути (амальгирование), алюминий начинает энергично реагировать с водой с образованием гидроксида алюминия и газообразного водорода:
с оксидами металлов
После поджигания смеси алюминия с оксидами менее активных металлов (правее алюминия в ряду активности) начинается крайне бурная сильно-экзотермическая реакция. Так, в случае взаимодействия алюминия с оксидом железа (III) развивается температура 2500-3000оС. В результате этой реакции образуется высокочистое расплавленное железо:
2AI + Fe2O3 = 2Fe + Аl2О3
Данный метод получения металлов из их оксидов путем восстановления алюминием называется алюмотермией или алюминотермией.
с кислотами-неокислителями
Взаимодействие алюминия с кислотами-неокислителями, т.е. практически всеми кислотами, кроме концентрированной серной и азотной кислот, приводит к образованию соли алюминия соответствующей кислоты и газообразного водорода:
2Аl + 6Н+ = 2Аl3+ + 3H2;
-концентрированной серной кислотой
Взаимодействие алюминия с концентрированной серной кислотой в обычных условиях, а также низких температурах не происходит вследствие эффекта, называемого пассивацией. При нагревании реакция возможна и приводит к образованию сульфата алюминия, воды и сероводорода, который образуется в результате восстановления серы, входящей в состав серной кислоты:
Такое глубокое восстановление серы со степени окисления +6 (в H2SO4) до степени окисления -2 (в H2S) происходит благодаря очень высокой восстановительной способности алюминия.
— концентрированной азотной кислотой
Концентрированная азотная кислота в обычных условиях также пассивирует алюминий, что делает возможным ее хранение в алюминиевых емкостях. Так же, как и в случае с концентрированной серной, взаимодействие алюминия с концентрированной азотной кислотой становится возможным при сильном нагревании, при этом преимущественно протекает реакция:
— разбавленной азотной кислотой
Взаимодействие алюминия с разбавленной по сравнению с концентрированной азотной кислотой приводит к продуктам более глубокого восстановления азота. Вместо NO в зависимости от степени разбавления могут образовываться N2O и NH4NO3:
8Al + 30HNO3(оч. разб) = 8Al(NO3)3 + 3NH4NO3 + 9H2O
со щелочами
Алюминий реагирует как с водными растворами щелочей:
так и с чистыми щелочами при сплавлении:
В обоих случаях реакция начинается с растворения защитной пленки оксида алюминия:
Аl2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4]
Аl2О3 + 2NaOH = 2NaAlO2 + Н2О
В случае водного раствора алюминий, очищенный от защитной оксидной пленки, начинает реагировать с водой по уравнению:
Образующийся гидроксид алюминия, будучи амфотерным, реагирует с водным раствором гидроксида натрия с образованием растворимого тетрагидроксоалюмината натрия:
Al(OH)3 + NaOH = Na[Al(OH)4]
Гидроксид алюминия — это… Что такое Гидроксид алюминия?
Гидрокси́д алюми́ния, вещество с формулой (а также , и ) — соединение оксида алюминия с водой. Белое студенистое вещество, плохо растворимое в воде, обладает амфотерными свойствами.
Получают при взаимодействии солей алюминия с водными растворами щёлочи, избегая их избытка:
Свежеосаждённый гидроксид алюминия способен взаимодействовать с:
Высушенный гидроксид алюминия представляет собой белое кристаллическое вещество, нерастворимое в кислотах и щёлочах.
Отдельные случаи взаимодействия гидрооксида алюминия с: гидрооксидом рубидия
Al(OH)3 + 3RbOH (водн. р-р) — Rb3
оксидом рубидия
2Al(OH)3 + Rb2O (сплав.) — 2RbAlO2 + 3h3O
гидроксидом цезия
Al(OH)3 + CsOH (сплав.) — CsAlO2 + 2h3O
карбонатом цезия
2Al(OH)3 + Cs2CO3 (сплав.) — 2CsAlO2 + 3h3O + CO2
Называется орто- и метааллюминевая кислота.
Применение
Используется при очистке воды, так как обладает способностью поглощать (адсорбировать) различные вещества, в медицине, в качестве антацидного средства, в качестве адъюванта при изготовлении вакцин. Применяется в качестве антипирена (подавителя горения) в пластиках и других материалах.
Гидроксид алюминия: свойства и все характеристики
На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.
Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!
Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!
Гидроксид алюминия существует в виде четырех полиморфных модификаций, каждую из которых можно выделить при конкретной температуре.
Рис. 1. Гидроксид алюминия. Внешний вид.
Основные характеристики гидроксида алюминия приведены в таблице ниже:
Молекулярная формула |
Al(OH)3 |
Молярная масса, г/моль |
78 |
Плотность, г/см3 |
2,42 |
Температура плавления, oС |
300 |
Получение гидроксида алюминия
Гидроксид алюминия выпадает в виде студенистого осадка при действии щелочей на растворы солей алюминия и легко образует коллоидные растворы.
AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl.
Химические свойства гидроксида алюминия
Гидроксид алюминия – типичный амфотерный гидроксид. С кислотами он образует соли, содержащие катион алюминия, со щелочами – алюминаты:
Al(OH)3 + 3HCldilute = AlCl3 + 3h3O;
Al(OH)3+ NaOH = NaAlO2 + 2h3O.
При взаимодействии гидроксида алюминия с водными растворами щелочей образуются гидроксоалюминаты:
Al(OH)3 + NaOHconc = Na.
При нагревании до температуры выше 575oС гидроксид алюминия разлагается:
2Al(OH)3 = Al2O3 + 3h3O.
Гидроксид алюминия не реагирует с гидратом аммиака, хлоридомаммония, диоксидами углерода и серы, сероводородом.
Применение гидроксида алюминия
За счет развитой поверхности, гидроксид алюминия выступает в качестве хорошего сорбента, поэтому его используют в фильтрах для очистки воды. Кроме этого он нашел применение в фармации, медицине и при производстве пластмасс.
Взаимодействие алюминия с простыми веществами
с кислородом
При контакте абсолютно чистого алюминия с воздухом атомы алюминия, находящиеся в поверхностном слое, мгновенно взаимодействуют с кислородом воздуха и образуют тончайшую, толщиной в несколько десятков атомарных слоев, прочную оксидную пленку состава Al2O3, которая защищает алюминий от дальнейшего окисления. Невозможно и окисление крупных образцов алюминия даже при очень высоких температурах. Тем не менее, мелкодисперсный порошок алюминия довольно легко сгорает в пламени горелки:
4Аl + 3О2 = 2Аl2О3
с галогенами
Алюминий очень энергично реагирует со всеми галогенами. Так, реакция между перемешанными порошками алюминия и йода протекает уже при комнатной температуре после добавления капли воды в качестве катализатора. Уравнение взаимодействия йода с алюминием:
2Al + 3I2 =2AlI3
С бромом, представляющим собой тёмно-бурую жидкость, алюминий также реагирует без нагревания. Образец алюминия достаточно просто внести в жидкий бром: тут же начинается бурная реакция с выделением большого количества тепла и света:
2Al + 3Br2 = 2AlBr3
Реакция между алюминием и хлором протекает при внесении нагретой алюминиевой фольги или мелкодисперсного порошка алюминия в заполненную хлором колбу. Алюминий эффектно сгорает в хлоре в соответствии с уравнением:
2Al + 3Cl2 = 2AlCl3
с серой
При нагревании до 150-200 оС или после поджигания смеси порошкообразных алюминия и серы между ними начинается интенсивная экзотермическая реакция с выделением света:
— сульфид алюминия
При взаимодействии алюминия с азотом при температуре около 800 oC образуется нитрид алюминия:
с углеродом
При температуре около 2000oC алюминий взаимодействует с углеродом и образует карбид (метанид) алюминия, содержащий углерод в степени окисления -4, как в метане.
производство
Практически весь гидроксид алюминия используется в коммерческих целях производится с помощью способа Байера , который включает растворение боксита в гидроксиде натрия при температурах до 270 ° C (518 ° F). Отходы твердых вещества, бокситы хвостохранилища , удаляют и гидроксид алюминия осаждают из раствора оставшегося алюмината натрия . Этот гидроксид алюминия может быть преобразован в оксид алюминия или оксид алюминия путем прокаливания .
Остаток или боксит хвостохранилище , который является в основном оксидом железа, сильно каустический из — за остаточный гидроксид натрия. Это исторически хранится в лагунах; это привело к Ajka глиноземного завода аварии в 2010 году в Венгрии, где плотина разрывной привела к утопления девяти человек. Дополнительные 122 искали лечение химических ожогов. Грязь загрязнена 40 квадратных километров (15 квадратных миль) земли и достигли Дуная . В то время как грязь считается нетоксичным из — за низких уровней тяжелых металлов, связанное с Взвесь имела рН 13.
Номенклатура
Присвоения имен для различных форм гидроксида алюминия является неоднозначным и не существует никакого универсального стандарта. Все четыре полиморфных имеют химический состав тригидроксида алюминия (один алюминиевый атом , прикрепленный к трем гидроксидным группам).
Гиббсит также известен как гидраргиллит, названный в честь греческих слов для воды ( гидры ) и глины ( argylles ). Первое соединение назвали гидраргиллит считалось, что гидроксид алюминия, но позднее было обнаружено, что фосфат алюминия ; несмотря на это, как гиббсит и гидраргиллит используются для обозначения того же полиморфизм гидроксида алюминия, с гиббситом используется наиболее часто в Соединенных Штатах и гидраргиллит чаще используется в Европе. В 1930 г. он был передан в качестве тригидрат α-оксида алюминия , чтобы противопоставить его с байерита , который получил название тригидрат β-оксида алюминия (альфа и бета обозначения были использованы , чтобы дифференцировать более и менее распространенные формы соответственно). В 1957 год симпозиум по глиноземной номенклатуре попытался разработать универсальный стандарт, в результате чего гиббсита быть обозначен & gamma; Al (OH) 3 , байерит став альфа-Al (OH) 3 , и нордстрандит быть обозначен Al (OH) 3 . На основе их кристаллографических свойств, предложенный номенклатура и обозначение для гиббсита , чтобы быть α-Al (OH) 3 , байерит , которые будут назначены бета-Al (OH) 3 , и оба нордстрандит и doyleite обозначены Al (OH) 3 . В соответствии с этим назначением, альфа и бета префиксы относятся к гексагональным, плотно упакованным структурам и измененным или обезвоженным полиморфизмам , соответственно, без дифференциации между нордстрандят и doyleite.
Получение и применение алюминия
Алюминий достаточно трудно выделить из природных соединений химическим способом, что объясняется высокой прочностью связей в оксиде алюминия, поэтому, для промышленного получения алюминия применяют электролиз раствора глинозема Al2O3 в расплавленном криолите Na3AlF6. В результате процесса алюминий выделяется на катоде, на аноде — кислород:
2Al2O3 → 4Al + 3O2
Исходным сырьем служат бокситы. Электролиз протекает при температуре 1000°C: температура плавления оксида алюминия составляет 2500°C — проводить электролиз при такой температуре не представляется возможным, поэтому оксид алюминия растворяют в расплавленном криолите, и уже затем полученный электролит используют при электролизе для получения алюминия.
Применение алюминия:
- алюминиевые сплавы широко применяются в качестве конструкционных материалов в автомобиле-, самолето-, судостроении: дюралюминий, силумин, алюминиевая бронза;
- в химической промышленности в качестве восстановителя;
- в пищевой промышленности для изготовления фольги, посуды, упаковочного материала;
- для изготовления проводов и проч.
Химические свойства комплексных солей (на примере соединений алюминия и цинка)
В рамках программы ЕГЭ по химии следует усвоить химические свойства таких комплексных соединений алюминия и цинка, как тетрагидроксоалюминаты и третрагидроксоцинкаты.
Тетрагидроксоалюминатами и тетрагидроксоцинкатами называют соли, анионы которых имеют формулы [Al(OH)4]— и [Zn(OH)4]2- соответственно. Рассмотрим химические свойства таких соединений на примере солей натрия:
Данные соединения, как и другие растворимые комплексные, хорошо диссоциируют, при этом практически все комплексные ионы (в квадратных скобках) остаются целыми и не диссоциируют дальше:
Действие избытка сильной кислоты на данные соединения приводит к образованию двух солей:
При действии же на них недостатка сильных кислот в новую соль переходит только активный металл. Алюминий и цинк в составе гидроксидов выпадают в осадок:
Осаждение гидроксидов алюминия и цинка сильными кислотами не является удачным выбором, поскольку сложно добавить строго необходимое для этого количество сильной кислоты, не растворив при этом часть осадка. По этой причине для этого используют углекислый газ, обладающий очень слабыми кислотными свойствами и благодаря этому не способный растворить осадок гидроксида:
В случае тетрагидроксоалюмината осаждение гидроксида также можно проводить, используя диоксид серы и сероводород:
В случае тетрагидроксоцинката осаждение сероводородом невозможно, поскольку в осадок вместо гидроксида цинка выпадает его сульфид:
При упаривании растворов тетрагидроксоцинката и тетрагидроксоалюмината с последующим прокаливанием данные соединения переходят соответственно в цинкат и алюминат:
Страницы
- Главная страница
- ОСНОВЫ ОБЩЕЙ ХИМИИ
- 1.1 Важнейшие классы неорганических веществ
- 2.1 Вещества. Атомы
- 2.2 Размеры атомов
- 2.3 Молекулы. Химические формулы
- 2.4 Простые и сложные вещества
- 2.5 Валентность элементов
- 2.6 Моль. Молярная масса
- 2.7 Закон Авогадро
- 2.8 Закон сохранения массы веществ
- 2.9 Вывод химических формул
- 3.1 Строение атома. Химическая связь
- 3.2 Строение атома
- 3.4 Строение электронной оболочки атома
- 3.5 Периодическая система химических элементов
- 3.6 Зависимость свойств элементов
- 3.7 Химическая связь и строение вещества
- 3.8 Гибридизация орбиталей
- 3.9 Донорно-акцепторный механизм образования
- 3.10 Степени окисления элементов
- 4.1 Классификация химических реакций
- 4.2 Тепловые эффекты реакций
- 4.3 Скорость химических реакций
- 4.4 Необратимые и обратимые реакции
- 4.5 Общая классификация химических реакций
- НЕОРГАНИЧЕСКАЯ ХИМИЯ
- 5.1 Растворы. Электролитическая диссоциация
- 5.2 Количественная характеристика состава растворов
- 5.3 Электролитическая диссоциация
- 5.4 Диссоциация кислот, оснований и солей
- 5.5 Диссоциация воды
- 5.6 Реакции обмена в водных растворах электролитов
- 5.7 Гидролиз солей
- 6.1 Важнейшие классы неорганических веществ
- 6.2 Кислоты, их свойства и получение
- 6.3 Амфотерные гидроксиды
- 6.4 Соли, их свойства и получение
- 6.5 Генетическая связь между важнейшими классами
- 6.6 Понятие о двойных солях
- 7.1 Металлы и их соединения
- 7.2 Электролиз
- 7.3 Общая характеристика металлов
- 7.4 Металлы главных подгрупп I и II групп
- 7.5 Алюминий
- 7.6 Железо
- 7.7 Хром
- 7.8 Важнейшие соединения марганца и меди
- 8.1 Неметаллы и их неорганические соединения
- 8.2 Водород, его получение
- 8.3 Галогены. Хлор
- 8.4 Халькогены. Кислород
- 8.5 Сера и ее важнейшие соединения
- 8.6 Азот. Аммиак. Соли аммония
- 8.7 Оксиды азота. Азотная кислота
- 8.8 Фосфор и его соединения
- 8.9 Углерод и его важнейшие соединения
- 8.10 Кремний и его важнейшие соединения
- ОРГАНИЧЕСКАЯ ХИМИЯ
- 9.1 Основные положения органической химии. Углеводороды
- 9.2 Электронные эффекты заместителей в органических соединениях
- 9.3 Предельные углеводороды (алканы)
- 9.3.1 Насыщенные УВ. Метан
- 9.4 Понятие о циклоалканах
- 9.5 Непредельные углеводороды
- 9.6 Диеновые углеводороды (алкадиены)
- 9.7 Алкины
- 9.8 Ароматические углеводороды
- 9.9 Природные источники углеводородов
- 10.1 Кислородсодержащие органические соединения
- 10.2 Фенолы
- 10.3 Альдегиды
- 10.4 Карбоновые кислоты
- 10.5 Сложные эфиры. Жиры
- 10.6 Понятие о поверхностно-активных веществах
- 10.7 Углеводы
- 11.1 Амины. Аминокислоты
- 11.2 Белки
- 11.3 Понятие о гетероциклических соединениях
- 11.4 Нуклеиновые кислоты
- 12.1 Высокомолекулярные соединения
- 12.2 Синтетические волокна
Химические свойства
Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид – ионов ОН—.
фенолфталеин – малиновый
лакмус – синий
метиловый оранжевый – желтый
Фенолфталеин придаёт раствору щёлочи малиновую окраску
2KOH + H2SO4 → K2SO4 + 2H2O,
растворимое
Mg(OH)2 + 2HCI → MgCI2 + 2H2O.
нерастворимое
2KOH + SO3 → K2SO4 + H2O
а) при плавлении:
2NaOH + AI2O3 → 2NaAIO2 + H2O,
NaOH + AI(OH)3 → NaAIO2 + 2H2O.
б) в растворе:
2NaOH + AI2O3 +3H2O → 2Na[AI(OH)4],
NaOH + AI(OH)3 → Na[AI(OH)4].
2NaOH + Zn + 2H2O → Na2[Zn(OH)4] + H2
2NaOH + Si + H2O → Na 2SiO3 + 2H2
2NaOH + CuSO4 → Cu(OH)2 + Na2SO4,
Ba(OH)2 + K2SO4 → BaSO4 + 2KOH.
Ca(OH)2 → CaO + H2O,
Cu(OH)2 → CuO + H2O.
Гидроксид алюминия — вещество с интересными свойствами
Гидроксид алюминия — неорганическое вещество, щелочь алюминия, формула Al(OH)3. Встречается в природе, входит в состав бокситов.
Свойства
Существует в четырех кристаллических модификациях и в виде коллоидного раствора, гелеобразного вещества. Реактив почти не водорастворим. Не горит, не взрывается, не ядовит.
В твердом виде — мелкокристаллический рыхлый порошок, белый или прозрачный, иногда с легким серым или розовым оттенком. Гелеобразный гидроксид тоже белый.
Химические свойства у твердой и гелеобразной модификации отличаются. Твердое вещество достаточно инертно, не вступает в реакции с кислотами, щелочами, другими элементами, но может образовывать метаалюминаты в результате сплавления с твердыми щелочами или карбонатами.
Гелеобразное вещество проявляет амфотерные свойства, то есть реагирует и с кислотами, и со щелочами. В реакции с кислотами образуются соли алюминия соответствующей кислоты, со щелочами — соли другого типа, алюминаты. Не вступает в реакции с раствором аммиака.
При нагревании гидроксид разлагается на оксид и воду.
Меры предосторожности
Реактив относится к четвертому классу опасности, считается пожаробезопасным и практически безопасным для человека и окружающей среды
Осторожность нужно проявлять только с аэрозольными частицами в воздухе: пыль оказывает раздражающее воздействие на органы дыхания, кожу, слизистые оболочки
Поэтому на рабочих местах, где возможно образование большого количества пыли гидроксида алюминия, сотрудники должны использовать средства защиты для органов дыхания, глаз и кожи. Следует наладить контроль содержания в воздухе рабочей зоны вредных веществ по методике, утвержденной ГОСТом.
Помещение должно быть оборудовано приточно-вытяжной вентиляцией, а при необходимости — местными аспирационными отсосами.
Хранят твердую гидроокись алюминия в многослойных бумажных мешках или другой таре для сыпучих продуктов.
Применение
— В промышленности реактив используется для получения чистого алюминия и производных алюминия, например, оксида алюминия, сернокислого и фтористого алюминия. — Оксид алюминия, получаемый из гидроксида, применяется для получения искусственных рубинов для нужд лазерной техники, корундов — для сушки воздуха, очистки минеральных масел, для производства наждака.— В медицине используется как обволакивающее средство и антацид длительного действия для нормализации кислотно-щелочного баланса ЖКТ человека, для лечения язвенной болезни желудка и двенадцатиперстной кишки, гастро-эзофагеального рефлюкса и некоторых других заболеваний.— В фармакологии входит в состав вакцин для усиления иммунной реакции организма на воздействие введенной инфекции.— В водоочистке — как адсорбент, помогающий удалять из воды различные загрязнения. Гидроксид активно вступает в реакции с веществами, которые нужно удалить, образуя нерастворимые соединения.— В химпроме используется как экологичный антипирен для полимеров, силиконов, каучуков, лакокрасочных материалов — чтобы ухудшить их горючесть, способность к возгоранию, подавить выделение дыма и токсичных газов.
— В производстве зубной пасты, минеральных удобрений, бумаги, красителей, криолита.
Разрушение комплексной соли
Опыт № 3. Взаимодействие раствора тетрагидроксоалюминината натрия с соляной кислотой и углекислым газом
К раствору гидроксоалюмината натрия будем добавлять по каплям разбавленный раствор соляной кислоты. Наблюдаем выпадение осадка гидроксида алюминия и его последующее растворение:
Na[Al(OH)4] + HCl = Al(OH)3¯ + NaCl + H2O
Al(OH)3+ 3HCl = AlCl3 + 3H2O
Тетрагидроксоалюминат натрия неустойчив и в кислой среде разрушается. Посмотрим, разрушает ли комплекс слабая угольная кислота.
Через раствор тетрагидроксоалюмината натрия будем пропускать углекислый газ. Углекислый газ, в свою очередь, получаем по реакции между мрамором и соляной кислотой. Через некоторое время образуется взвесь нерастворимого в воде гидроксида алюминия, которая при дальнейшем пропускании углекислого газа не исчезает.
Na[Al(OH)4] + CO2= Al(OH)3 + NaHCO3
Т. е. избыток углекислоты не растворяет гидроксид алюминия.
Подведение итогов урока
Чтобы получить нерастворимый в воде гидроксид алюминия, надо провести реакцию между раствором соли алюминия и небольшим количеством раствора щелочи (т. к. в избытке щелочи гидроксид алюминия растворяется). Полученный гидроксид алюминия прореагировал и со щелочью, и с кислотой, а значит, он проявил амфотерные свойства. При взаимодействии с раствором щелочи гидроксид алюминия образует комплексную соль, которая разрушается в кислой среде.
Список литературы
- Новошинский И.И., Новошинская Н.С. Химия. Учебник для 10 класса общеобр. учрежд. Профильный уровень. – М.: ООО «ТИД «Русское слово – РС», 2008. (§ 54)
- Кузнецова Н.Е., Литвинова Т.Н., Лёвкин А.Н. Химия: 11 класс: Учебник для учащихся общеобраз. учрежд. (профильный уровень): в 2-х ч. Ч.2. М.: Вентана-Граф, 2008. (с. 110–111)
- Радецкий А.М. Химия. Дидактический материал. 10–11 классы. – М.: Просвещение, 2011.
- Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. – М.: РИА «Новая волна»: Издатель Умеренков, 2008.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Алхимик (Источник).
- Алхимик (Источник).
- Chemport (Источник).
- Lidijavk.ucoz.ru (Источник).
Домашнее задание
- с. 27-29 №№ 5.1, 5.15, 5.25 из сборника задач и упражнений по химии для средней школы (Хомченко И.Д.), 2008.
- Запишите уравнение реакции, в результате которой образуется гидроксид хрома (III); проиллюстрируйте уравнениями реакций амфотерный характер данного гидроксида.
Химические свойства амфотерных гидроксидов цинка и алюминия
Реакции гидроксидов цинка и алюминия с оксидом натрия происходят при сплавлении, потому что эти гидроксиды твердые и не входят в состав растворов.
Zn(OН)2 + Na2O → Na2ZnO2 + Н2О соль называется цинкат натрия.
2Al(OН)3 + Na2O → 2NaAlO2 + 3Н2О соль называется метаалюминат натрия.
Рис. 3. Гидроксид алюминия
Реакции амфотерных оснований со щелочами характеризует их кислотные свойства. Данные реакции можно проводить как при сплавлении твердых веществ, так и в растворах. Но при этом получатся разные вещества, т.е. продукты реакции зависят от условий проведения реакции: в расплаве или в растворе.
Zn(OH)2 + 2NaOH тв. Na2ZnO2 + 2Н2О
Al(OH)3 + NaOH тв. NaAlO2+ 2H2O
Zn(OH)2 + 2NaOH раствор → Na2[Zn(OH)4] Al(OH)3 + NaOH раствор → Na[Al(OH)4] тетрагидроксоалюминат натрия Al(OH)3 + 3NaOH раствор→ Na3[Al(OH)6] гексагидроксоалюминат натрия.
Получается тетрагидроксоалюминат натрия или гексагидроксоалюминат натрия зависит от того, сколько щелочи мы взяли. В последней реакции щелочи взято много и образуется гексагидроксоалюминат натрия.