Строение
В 1 хлоропласте содержится от 10 до 100 гран. Они соединены межграновыми органеллами, которые называются ламеллами. Они представляют собой мембранные выросты. Отличительная особенность органелл определяется белковым составом.
Представленные структуры состоят из следующих отделов:
- Мембрана.
За счет мембраны образование имеет четкие границы, и отделяется от других аналогичных структур. В мембране происходит светозависимая реакция фотосинтеза. В ней участвует ряд пигментных веществ, содержащихся непосредственно в мембране. Они состоят из неравномерно распределенных липидных веществ. - Люмен.
Представляет собой содержимое хлоропластов, которое ограничивается оболочкой. В нем происходит процесс выработки АТФ за счет световой энергии. Сквозь мембрану в люмен проникают световые частицы. Это главный этап фотосинтеза, при котором происходит обменный процесс.
Тилакоиды формируются при достаточном освещении из пропластид растительных клеток. В процессе участвуют белковые соединения, формирующие органеллы.
Хемосинтез
Фотосинтез происходит на суше и на мелководье, где доступен солнечный свет. Но образование моноуглеводов из углекислого газа и воды возможно и без солнечной энергии. И такую возможность используют бактерии.
Хемосинтез – это процесс, при котором пища (глюкоза) производится с использованием химических веществ (вместо солнечного света) в качестве источника энергии. Хемосинтез происходит вокруг гидротермальных источников и метановых утечек в глубоком море, и других теплых местах, где отсутствует солнечный свет.
Во время хемосинтеза бактерии, живущие на морском дне или внутри животных, используют энергию, запасенную в химических связях сероводорода и метана, для получения глюкозы из воды и углекислого газа (растворенного в морской воде). Как побочные продукты хемосинтеза образуются сера и соединения серы.
Оба процесса, фотосинтез и хемосинтез, сводятся к образованию молекул глюкозы и других простых углеводов из СО2 и Н2О. Но у этих процессов разные источники энергии и побочные продукты (отходы). И это определяет значение растений и бактерий в природе.
Где происходит «рождение» энергии и кислорода
Как и митохондрия, хлоропласт перекачивает протоны через мембрану. Но если митохондрии выводят протоны наружу, то в пластидах протоны накапливаются внутри гранов. Таким образом, мембраны гранов похожи на «вывернутые наизнанку» оболочки митохондрий. При этом и те, и другие имеют одинаковую функцию – преобразование одной энергии (света) в другую – энергию для синтеза АТФ (кислота, доставляющая энергию для химических реакций, протекающих в клетке).
Итак, функции мембран:
- Реакция фотосинтеза. Светозависимое расщепление воды с выделением кислорода.
- Перенос протонов – транспортировка энергии.
- Синтез АТФ (аденозинтрифосфат) – универсального источника энергии для биохимических процессов. Этот процесс очень похож на синтез АТФ в митохондрии.
Световая стадия фотосинтеза в тилакоидах
Фотосинтез – это цикличный процесс, который протекает в 2 фазы: световую и темновую. Световой этап протекает в хлоропластах. Процесс сопровождается образованием АТФ и формированием молекул, которые его переносят. Побочным продуктом распада становится кислород, который в дальнейшем покидает клетки и попадает в окружающее пространство.
Эффективность фотосинтеза напрямую влияет не только от количества поглощаемого света, но и температурного показателя. Поэтому скорость протекающего процесса может меняться в темновую стадию.
Содержащийся в хлоропластах хлорофилл выполняет одновременно функцию поглощения и передачи световой энергии. Содержимое хлоропластов выполняет функцию светособирающего комплекса.
Внутри люмен происходит расщепление световой энергии, в результате чего также разрушаются транспортные молекулы хлорофилла. Для их восполнения в процессе фотосинтеза расщепляются молекулы воды, которые в дальнейшем выполняют транспортную функцию, а также участвуют в формировании электрохимического потенциала клетки.
После фотолиза воды мембраны перезаряжаются. Тилакоиды способны при переносе протонов иметь кислый рН, в то время как строма хлоропласта характеризуется слабощелочным рН. В результате разницы генерируется электрохимический потенциал, провоцирующий синтез АТФ.
Для выработки 1 молекулы глюкозы – органического вещества для питания клетки, требуется 18 молекул АТФ, 6 – углекислого газа, а также 24 протона водорода. Для утилизации 6 молекул газа требуется 24 молекулы воды, в результате чего высвобождается кислород. В дальнейшем он используется другими живыми организмами для восполнения собственных потребностей.
Тилакоиды – структурные элементы хлоропластов, внутри которых происходят основные этапы фотосинтеза. Помимо этого, такие образования выполняют опорные функции, образуя совокупность в виде гран. Тилакоиды содержатся внутри всех растительных клеток, способных к фотосинтезу, а также внутри цианобактерий, которые не имеют отдельных ядра и других органелл, ввиду чего относятся к числу прокариотов.
Где протекает фотосинтез
В клетках растений и зеленых водорослей есть постоянно существующие структуры (органоиды) с четко определенными функциями – хлоропласты, в которых протекает фотосинтез. В каждой клеточке растения может быть 10 – 30 таких структур. И в каждом из них находятся еще более мелкие образования (тилакоиды), соединенные в стопки (граны), отвечающие за производство кислорода.
Термин «тилакоид» произошел от греческого слова «мешок». Это такие отдельные области внутри хлоропластов, окруженные оболочкой и соединенные в стопки (граны).
В состав хлоропластов входят:
- наружная мембрана;
- межмембранное пространство;
- внутренняя мембрана;
- строма (жидкость);
- тилакоиды;
- стопки тилакоидов (гран);
- связующее звено (ламелла или единичные тилакоиды);
- зерна крахмала;
- рибосомы;
- ДНК;
- капли жира (пластоглобула).
Хлоропласт, как и митохондрия (энергетическая станция), состоит из двух мембран – внутренней и внешней. Внутренняя выпячивается внутрь и образует целую систему поверхностей, ограничивающих своеобразные плоские «мешочки» – тилакоиды или ламеллы.
Представьте себе стопку пухлых зеленых блинчиков. Такой столбик называется гран (от лат. «стопка монет»). В хлоропластах может быть от 10 до 100 гран. Пространство между оболочкой и гранами называется стромой. Граны соединены между собой в единое пространство. Эти соединительные звенья называют ламеллы стромы или тилакоиды стромы. Обычно они располагаются параллельно друг другу, никак не связаны между собой и не образуют граны.
ДНК хлоропластов сильно отличаются от ДНК ядра и больше похожи на ДНК прокариотических (безъядерных) клеток. Функциональные особенности этих пластид и их строение делают их похожими на цианобактерии. В то же время, несмотря на автономный синтез белка и наличие ДНК, отдельно от клетки они существовать не могут. Эта особенность роднит их с митохондриями, тоже имеющими собственный синтез белка и митохондриальную ДНК, но не способными существовать как отдельный организм.
Значение фотосинтеза в природе
Растения жизненно важны для существования человека и других животных. Без фотосинтеза у нас не было бы ни кислорода, ни пищи, чтобы элементарно оставаться в живых.
Жизнь на нашей планете поддерживается в основном благодаря фотосинтезу водорослями и наземными растениями. Это связано с их способностью синтезировать органическое вещество из неорганических веществ почвы, воды и атмосферного углекислого газа, с использованием солнечного света.
Также можем рассматривать растения (наземные и водные) как глобальную фабрику кислорода, который они выбрасывают в виде отходов фотосинтеза, когда производят для себя сахар и прочие углеводы, используя воду с углекислым газом в качестве сырья, а свет – источника энергии.
Молекулярны механизм фотосинтеза и структура фотосинтетического аппарата.
С использованием изотопных меток показано, что источником O2 в фотосинтезе является только вода:
Фотосинтез пространственно и во времени разделяется на два сравнительно обособленных процесса: световую стадию окисления воды и темновую стадию восстановления CO2 (рис. 1). Обе эти стадии осуществляются у высших растений и водорослей в специализированных органеллах клетки — хлоропластах. Исключение — синезеленые водоросли (цианобактерии), у которых нет аппарата фотосинтеза, обособленного от цитоплазматических мембран.
Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетический аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (так называемых тилакоидах), тогда как темновая стадия происходит в жидком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях — в так называемых хроматофорах.
Темновая стадия фотосинтеза
Все фотосинтезирующие организмы, выделяющие O2, а также некоторые фотосинтезирующие бактерии сначала восстанавливают CO2 до фосфатов Сахаров в так называемом Калвина. У фотосинтезирующих бактерий встречаются, по-видимому, и другие механизмы. Большинство ферментов цикла Калвина находится в растворимом состоянии в строме хлоропластов.
Упрощенная схема цикла показана на рис. 4. Первая стадия — карбоксилирование рибулозо-1,5-дифосфата и гидролиз продукта с ооразованием двух молекул 3-фосфоглицериновой кислоты. Эта С3-кислота фосфорилируется АТФ с образованием 3-фосфоглицероилфосфата, который затем восстанавливается НАДФН до глицеральдегид-3-фосфата. Полученный триозофосфат затем вступает в ряд реакций изомеризации, конденсации и перегруппировок, дающих 3 молекулы рибулозо-5-фосфата. Последний фосфорилируется при участии АТФ с образованием рибулозо-1,5-дифосфата и, таким образом, цикл замыкается. Одна из 6 образующихся молекул глицеральдегид-3-фосфата превращается в глюкозо-6-фосфат и используется затем для синтеза крахмала либо выделяется из хлоропласта в цитоплазму. Глицеральдегид-3-фосфат может также превращаться в 3-глицерофосфат и затем в липиды. Триозофосфаты, поступающие из хлоропласта, превращаются в основном в сахарозу, которая переносится из листа в другие части растения.
В одном полном обороте цикла Калвина расходуется 9 молекул АТФ и 6 молекул НАДФН для образования одной молекулы 3-фосфоглицериновой кислоты. Энергетическая эффективность цикла (отношение энергии фотонов, необходимых для фотосинтеза АТФ и НАДФН, к ΔG образования углевода из CO2) с учетом действующих в строме хлоропласта концентраций субстратов составляет 83%. В самом цикле Калвина нет фотохимических стадий, но световые стадии могут косвенно влиять на него (в том числе и на реакции, не требующие АТФ или НАДФН) через изменения концентраций ионов Mg2+ и H+, а также уровня восстановленности ферредоксина.
Некоторые высшие растения, приспособившиеся к высокой интенсивности света и к теплому климату (например, сахарный тростник, кукуруза), способны предварительно фиксировать CO2 в дополнительном С4-цикле. При этом CO2 сначала включается в обмен четырехуглеродных дикарбоновых кислот, которые затем декарбоксилируются там, где локализован цикл Калвина. С4-цикл характерен для растений с особым анатомическим строением листа и разделением функций между двумя типами клеток: мезофильных, где сосредоточено карбоксилирование фосфоенолпировиноградной кислоты, и клеток обкладки сосудистого пучка, где функционирует цикл Калвина. Образующаяся в С4-цикле щавелевоуксусная кислота восстанавливается НАДФН до яблочной, которая перемещается в клетки сосудистой обкладки и здесь подвергается окислительному декарбоксилированию, образуя пировиноградную кислоту, CO2 и НАДФН. Два последних используются в цикле Калвина, а пировиноградная кислота возвращается в С4-цикл (рис. 5). Физиологический смысл С4-цикла состоит в запасании CO2 и повышении, таким образом, общей эффективности процесса.
Для кактусов, молочая и других засухоустойчивых растений характерно частичное разделение фиксации CO2 и фотосинтеза во времени (CAM-обмен, или обмен по типу толстянковых; CAM сокр. от англ. Crassulaceae acid metabolism). Днем устьица (каналы, через которые осуществляется газообмен с атмосферой) закрываются, чтобы уменьшить испарение воды. При этом поступление CO2 также затруднено. Ночью устьица открываются, происходит фиксация CO2 в виде фосфоенол-пировиноградной кислоты с образованием С4-кислот, которые днем декарбоксилируются, а освобождаемый при этом CO2 включается в цикл Калвина (рис. 6).
Хлоропласт: фотосинтез
При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.
Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).
И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.
Фотосинтез: историческая справка
Ок. 1770 Дж.Пристли обнаружил, что растения выделяют O2. В 1779 Я.Ингенхауз установил, что для этого необходим свет и что O2 выделяют только зеленые части растений. Ж.Сенебье в 1782 показал, что для питания растений требуется CO2; в начале 19 в. H.Соссюр, исходя из закона сохранения массы, подтвердил, что большая часть массы растений создается из CO2 и воды. В 1817 П.Пельтье и Ж.Каванту выделили зеленый пигмент хлорофилл. Позже К.А.Тимирязев показал близость спектра действия фотосинтеза и спектра поглощения хлорофилла. Ю.Сакс в середине 19 в., по-видимому, первым осознал, что этот продукт накапливается в хлоропластах, а Т.В.Энгельман доказал, что именно там же выделяется и O2.
В работах Ф.Блэкмана (1905), P.Эмерсона и У.Арнолда (1932), а также P.Хилла (1936-41) показано наличие световой и темновой стадий фотосинтеза и экспериментально реализована световая стадия в отсутствие CO2 с использованием искусственных акцепторов электрона. Тем самым были получены подтверждения представлений об образовании O2 путем окисления воды. Окончательно это было доказано масс-спектрометрическим методом (С.Рубен, M.Камен, а также А.П.Виноградов и Р.В.Тейс, 1941).
В 1935-41 К.Ван Ниль обобщил данные по фотосинтезу высших растений и бактерий и предложил общее уравнение, охватывающее все типы фотосинтеза X.Гаффрон и К.Воль, а также Л.Дёйсенс в 1936-52 на основе количественных измерений выхода продуктов фотосинтеза поглощенного света и содержания хлорофилла сформулировали представление о «фотосинтетической единице» — ансамбле молекул пигмента, осуществляющих светосбор и обслуживающих фотохимический центр.
В 40-50-х гг. M.Калвин, используя изотоп 14C, выявил механизм фиксации CO2. Д.Арнон (1954) открыл фотофосфорилирование (инициируемый светом синтез АТФ из АДФ и H3PO4) и сформулировал концепцию электронного транспорта в мембранах хлоропластов. P.Эмерсон и Ч.M.Льюис (1942-43) обнаружили резкое снижение эффективности фотосинтеза при 700 нм (красное падение, или первый эффект Эмерсона), а в 1957 Эмерсон наблюдал неаддитивное усиление фотосинтеза при добавлении света низкой интенсивности с 650 нм к дальнему красному свету (эффект усиления, или второй эффект Эмерсона). На этом основании в 60-х гг. сформулировано представление о последовательно действующих фотосистемах в электронтранспортной цепи фотосинтеза с максимумами в спектрах действия вблизи 680 и 700 нм.
Основные закономерности образования O2 при окислении воды в фотосинтезе установлены в работах Б.Кока и П.Жолио (1969-70). Близится к завершению выяснение молекулярной организации мембранного комплекса, катализирующего этот процесс. В 80-х гг. методом рентгеновского структурного анализа детально изучена структура отдельных компонентов фотосинтетического аппарата, включая реакционные центры и светособирающие комплексы (И.Дайзенхофер, X.Михель, P.Хубер).
Лит.: Клейтон Р., Фотосинтез. Физические механизмы и химические модели, пер. с англ., M., 1984; «Ж. Всес. хим. об-ва им. Д.И.Менделеева», 1986, т. 31, № 6; Фотосинтез, под ред. Говинджи, пер. с англ., т. 1-2, M., 1987; Итоги науки и техники, сер. Биофизика, т. 20-22, M., 1987.
М.Г.Гольдфельд.